/) RIPHAH
¢ | INTERNATIONAL
RIUALL UNIVERSITY

Lab 14
Writing Basic Software Applications
Lab: MicroBlaze

RIPHAH
INTERNATIONAL

Writing Basic Software Applications Lab:
MicroBlaze

Introduction

This lab guides you through the process of writing a basic software application. The software will
write to one of the OPB GPIOs; LEDs. Xilinx Platform Studio (XPS) will write the code and
create an MSS file for LibGen.

Objectives

After completing this lab, you will be able to:
e Write a basic application to access an IP peripheral

e Utilize XPS to generate a MSS file
e Generate a bit file
e Download the bit file and verify in hardware (if hardware is available)
o Develop a simple linker script
Procedure

The first three labs defined the hardware for the processor system. This lab comprises several
steps, including the writing of a basic software application to access one of the peripherals
specified in Lab2mb. Below each general instruction for a given procedure, you will find
accompanying step-by-step directions and illustrated figures providing more detail for performing
the general instruction. If you feel confident about a specific instruction, feel free to skip the step-
by-step directions and move on to the next general instruction in the procedure.

Note: If you are unable to complete the lab at this time, you can download the lab files for this
module from the Xilinx University Program site at http://university.xilinx.com

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

RIPHAH
INTERNATIONAL

Opening the Project Step 1

\‘> O Create a lab14mb folder in the c:\xup\embedded\labs directory. If you wish to continue with
your completed design from lab3 then copy the contents of the lab3mb folder into the
lab4mb folder, otherwise, if you wish to start with a known good design, then copy the
contents of ¢:\xup\embedded\mb_completed\lab3mb into the lab4mb directory.

® Open XPS by clicking Start — Programs — Xilinx Platform Studio — Xilinx Platform
Studio

© Click File — Open Project and browse to the project which in the directory:
c:\xup\embedded\labs\lab14mb

® Click system.xmp to open the project

Creating a BSP Step 2

@ Specify the MicroBlaze™ processor standalone operating system and driver
interface level.

The BSP is created based upon the peripherals included in the design.

© Double-click microblaze 0 from the System BSP hierarchy, as shown in Figure 10c-1. You
can also open the same dialog box by clicking Project — Software Platform Settings

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

W
RIPHAH

INTERNATIONAL
NIVERSITY

RIPHAH
INTERNATIONAL
UNIVERSITY

@ File Edt View Project Hardware Software Device Configuration Debug Simulation Window Help -

D2 BB % X®oo|th S E
Acphcators wO8x
Software Projects

Add Software Application Project.
Defaut: microblaze 0_bootioop

© i"“‘ﬁ'-'mlw

Default: microbleze 0 xmdstub
i , Memory_microblaze 0
& Processor: microblaze 0
Executable: C:\Users\Lab\Desktop\shukhi TestApp_Memory_microblaze 0\executable.ef
Compier Options

Headers
= [Project: TestApp_Peripheral_microblaze 0
& Processor: microblaze
Executable: C:\Users\Lab\Desktop\shikh\TestApp_Peripheral_microblaze 0\executable.elf |
& Compder Options |
@ Sources
& Headers

ol x
RO AR P=ARN WP WX B s ZETNR
I T s teraceFtes
Bus Name PType P Version Jlez connecten_

A 9] Connect
Yr mbM0 1008
a ¥ Unconnected
% imb M0 1002 |,
b6 1048 11® 915"/’5["""';'“
¢ microblaze 7308 | 8
¥ bram block 100.8 : o
Y Imb_bram i, 2106 | - —_—
Jrbienl ot By nterface Type
e 108 | (% Slaves
o xpsgpo 2002 - ryiy
‘l‘ g o ‘ [Master Slaves
W xpsgpic 2008] Monitors
¢ xpsusrtite 10La | g
¢ xpruarite 10La O g
¥ clock gene.. 4002 |
* procsysre. 2002

'

er 9Slave ITarget Ciniator @
Teproduction [License (paid) BLicense (eval) iocal akpre Production W2Beta EiDevelopment
1 Superseded

® Proet| & acoicatons | 1P Catsog

Start Up Page. L Desgnsummery || | M BockDegam @ System Assevbly view [J

Figure 10c-1. Opening S/W Settings for the microblaze_0 Instance

Writing Basic Software Applications Lab:
MicroBlaze

http://riphah.edu.pk

¢/ RIPHAH
INTERNATIONAL
st UNIVERSITY

This will open the Software Platform Settings dialog with the Software Platform tab.

n Studio - CU!

Proj

Iy ™"

= Bl o NN, BT O S DL - N I | v 0 i =
—
Software Platform Settings - Dep £
Processor Information
ware Applica
icroblaze 0 Processor Instance: |microblaze_0 [+]
microblaze 0,
TestApp_Metl|(| Software Platform I
r: micreblazelfl | 0S and Lib Configuration <
& Ci\Users\| Drivers CPU Driver: cpu CPU Driver Version: 1.12b [+]
Options
Processor Parameters:
ers\Lab\Deski
Name CurrentValue DefaultValue Type Description
TestApp_Pe: £ microblaze 0
: microblaze - compiler mb-gec mb-gee string Compiler used to compile both BSP...
& Ci\Users\| - archiver mb-ar mb-ar string Archiver used to archive libraries for...
Options | etra_co. g g string Extra compiler flags used in BSP and...
' xmdstu.. none [<] nene peripheral_insta... Debug peripheral to be used with x...
—— 05 &Library Settings
05 standalone Versan: 3002 || | Standalone s a simple, low-level software platform. It %
Use |stzndabone Version Description
] xilmfs 100.2 [=] xilinx Memory File System
- E xilisf 200.2 [= Xilinx In-system and Serial Flash Library
- @ xilflash 200.2 [+ Xilirx Flash library for Intel/AMD CFI compliant parallel...
E | silfatfs 100.2 [+ Provides read/write routines to access files stored on a...
- E Iwip130 200.2 ['«| WIP TCP/IP Stack library: wIP v13.0, Xilinx adapter v2.0...
0
% Application
default
Driver ge
river ash [ok][canel][el

=
1\ Warninas | @) Errors
Figure 10c-2. Software Platform Settings for the microblaze_0 Instance

© In the Software Platform tab, the Driver can be selected for each of the peripherals in the
system. You can also select the Kernel and Operating Systems for each of the processor
instances. In addition, supporting libraries can be selected if they will be used. Make sure that
the settings are as displayed in Figure 10c-2

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

$/ RIPHAH
INTERNATIONAL
nﬁgﬂ?{?l UNIVERSITY

© Click on the Processor and Driver Parameters tab and specify the following parameters:

Processor Parameters: Instance
compiler — mb-gcc
archiver — mb-ar
EXTRA_COMPILER_FLAGS --g
xmdstub_peripheral — none
CORE_CLOCK_FREQ_HZ - 50000000
Driver Parameters: Instance
Leave Blank

oM AH - B lio ol Lad i @ 0 Big (R &2 . e A T | e 2s a3 (D i H W — s

4 Software Platform Settings - Deprecal (i

Processor Information
Processor Instance: |microblaze_0
Software Platform
05 and Lib Configuration ELSEEA Sl
Peripheral Hw Version Instance Driver Version
- Imb_bram_i.. 210.b dimb_cntlr bram [+]2.00a [=]
- Imb_bram_i.. 210.b ilmb_cntir bram [+ 12002 =
- xps_vartlite 1.01.a RS232_DTE uartlite [w2.00.a [l
- xps_vartlite 1.0l.a RS232_DCE uartlite [w2.00.a [l
- xps_gpio 200.a LEDs 8Bit gpic [w]3.00.a =
- ¥ps_gpio 200.a DIPs 4Bit gpic [w3.00.a =
- ¥ps_gpio 200.a BTNs 4Bit gpic [w3.00.a =
- mdm 100.g mdm 0 uartlite [«l2.00a [l
Driver Parameters:
MName
-~ bram : dimb_cntir
-~ bram: ilmb_cntlr
- uartlite : R5232_DTE
- uartlite : RS232_DCE
- gpio: LEDs_8Bit
- gpio: DIPs_4Bit
- gpio: BTNs_4Bit
- wartlite : mdm_0
[oK] [Cancel] l Help I

Figure 10c-3. Processor and Driver Parameters Tab of the Software Platform
Settings for the microblaze 0 Instance

® Click the Library/OS Parameters tab

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

W RIPHAH
INTERNATIONAL
winoet UNIVERSITY

UNIVERSITY

& Software Pl

= _
Processor Information

a

0. Processor Instance: |microblaze_0

ol

el [Software Platform

elll | 0s and Lib Configuration B s

Lall | Drivers
Peripheral Hu Version Instance Driver Version
- Imb_bram_if_cntlr 2106 dimb_cntlr bram =
 Imb_bram_if_cntlr ilmb_cntlr (<]

R5232_DTE =

! RS232_DCE =
~xps_gpio 200.a LEDs 8Bit =

Lg - xps_gpio 2002 DIPs_4Bit gpio =
~-xps_gpio 200.a BTNs_4Bit gpio =
- mdm 100.g mdm_0 vartlite =

Driver Parameters:

Name
~-bram: dimb_cntlr

~ bram: ilmb_cntir

- uartlite : RS232_DTE
- uartlite: R$232_DCE
- gpio: LEDs 8Bit
gpio: DIPs_4Bit
- gpio : BTNs_4Bit
*uvartlite: mdm_0

i A R -)

Figure 10c-4. Library/OS Parameters Tab of the Software Platform Settings for
the microblaze 0 Instance

© Click the Current Value field for stdin and select RS232. Similarly, click the Current
Value field for stdout and select RS232. This will assign the uart device as the stdin and
stdout. Base System Builder already set these when the RS232 peripheral was included. If a
system does not have any stdin/stdout devices, then keep the current value as None. Leave
the Current Value for need_xil_malloc as false because your application does not use any
malloc function call

O Click OK to accept the settings

@ Generate the BSP.

© Double-click the system.mss file under the System tab in XPS, as shown in Figure 10c-5

This will open the MSS file for this project.

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

\;() RIPHAH
INTERNATIONAL

sttt UNIVERSITY

File Edit View Project Hardware Software Device Configuration

04

02 EHP| . [B8F 400X 8|0 |
Project ~0s x|
Platform
= Project Files

- MHS File: system.mhs

- UCF File: data/system.ucf
- iMPACT Command File: etc/download.cmd
- Implementation Options File: etc/fast_runtime.opt
- Bitgen Options File: etc/bitgen.ut
- Project Options
- Device: xc3s700afgd84 -4
- Metlist: TopLevel
- Implementation: XP5 (Xflow)
- HDL: VHDL
- 5im Model: BEHAVIORAL
ign Summary

Figure 10c-5. System Tab

4

3

|

NPT

Writing Basic Software Applications Lab: http://riphah.edu.pk

MicroBlaze

/) RIPHAH
¢ | INTERNATIONAL
RIUALL UNIVERSITY

© XPS has written the parameters that are specified in the Peripheral Options to the
system.mss file

@ 1. List the assigned driver to each of the following peripheral instances:

mb_opb:

debug_module:

dimb_cntlr:

ilmb_cntlr:

LEDs_8Bit:
Push_Buttons_3Bit:

DIP_Switches_8Bit:

delay:

RS232:

opb_7segled_0:

@ 2. Why do some of the above mentioned devices not have a specific driver?

© Close the system.mss file
- . . tikz
® Generate the BSP by clicking Tools - Generate Libraries or click the I button

This will run LibGen on the system.mss file to generate the BSP library files.

2 3. Listthe created subfolders, their contents, and their possible purposes under the
microblaze_0 folder in the lab4mb folder.

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

/) RIPHAH
INTERNATIONAL
RIAL UNIVERSITY

NIVERSITY

Creating a Basic C File Step 3

@ Add a software project and create a basic C file to write data to the LEDs_8Bit
peripheral.

© Inthe Applications Tab double Click on Software Projects

This will open a dialog box to create a new project

S
B

D3EF| - | B8E| % X®|oc | BBARS BMEL F-=AR wit @X
Applications w08 x| |

Software Projects PARBMETER VERSICN = 2.2.0

[Add Software Application Project...
Default: microblaze_0_bootloop
Default: microblaze_0_xmdstub
& [¥] Project: TestApp_Memary_microblaze_0
Processor: microblsze 0 .
Executable: C\UsersiLab\Diesktop'shkhi TestApp_Memery_micr
Compiler Options

1

2

3

4

5 BEGIN OS
6 PARAMETER OS_NAME = standalone

7 PARARMETER O5_VER = 3.00.a

& PRRBMETER PROC_INSTANCE = microblaze 0
9 PRRRMETER 5TDIN = R5232_DTE

1o PARARMETER STDOUT = RS232_DTE

A
£ Sources - o
CUsers\Lab)\Desktop\shikh\TestApp_Memery_microblaze 8] 7| 72 =
Headers %| 13
-1 Project: TestApp_Peripheral_microblaze 0 1] [———

Processor: microblaze 0
Executable; C:\Users\Lab\Desktop'shxkh\ TestApp_Peripheral_mic

Compiler Opti
sz.:fe‘:r pene % Add Software Application Project -

Headers

1s PARARMETER DRIVER_NAME = cpu

Project Name
Note: Project Name cannat have spaces.
Processor microblaze_0 =]
[7] Projectis an ELFonly Project
Choose an ELF fik.
Browse...

The ELF file is assumed to be generated outside XPS

Default ELF name is <sw project name:»/executable. elf

Figure 10c-6. New Project

© Enter the name MyProj and click OK.
©® Click File - New
This will open a dialog box to create a new project

This will open a new document in the XPS editor

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

W RIPHAH
INTERNATIONAL
winoet UNIVERSITY

UNIVERSITY

COX|

EQU View Fropct Took Optons Window Help
D= & L] L &3] = of BEM &N
@ WDk BN R e T, =

) p—

= e |

Right Click for Optians

_0vjioy directary

Output, Eirrs
reac

Figure 10c-7. New Document in the XPS Editor

The first step is to add the header files for the required functions. All of the header files related to
this project were placed in the microblaze_0/include directory when LibGen was run.

@ Add the following to the C file:

e #include "xparameters.h"
e #include "xgpio.h"

© Click File — Save As
This will open the Save As dialog.

O® Create a new directory named code in the lab4mb directory and save the file as system.c, as
shown in Figure 10c-8

Save in: |l.f,\ code j =5 Ef-

File name: |s_|,lstem.|:
Save as type: |Te:-:t Files ["¢ ".cpp "o “o++ "o “h ™2 j %

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

7]

() RIPHAH
¢ | INTERNATIONAL
RIMAH, UNIVERSITY

Figure 10c-8. Save As Dialog

Add the following to the C file

main() {

The first step in main is to initialize the GP1O peripheral

@ Write a main() function that will initialize and set the data direction for the
LEDs_8Bit peripheral to output.

© From the Windows start menu Click Start - Programs — Xilinx Platform Studio 6.2i —»
EDK 6.2 Documentation

© Click the Documents link

© Scroll down and click Driver Reference Guide
This will open the xilinx_drivers.pdf file.

® In Acrobat Reader, click #h and search for the XGpio_Initialize function. You may have
to click Find Next to observe the function description page

© This documentation contains a detailed description of the XGpio_Initialize function

e The documentation outlines two parameters that XGpio_Initialize requires:

e InstancePtr is a pointer to an XGpio instance. The memory that the pointer references
must be preallocated by the caller. Further calls to manipulate the component through the
XGpio API must be made with this pointer.

e Deviceld is the unique ID of the device controlled by this XGpio component. Passing in a
device ID associates the generic XGpio instance to a specific device, as chosen by the
caller or application developer.

@ Define an XGpio type variable named gp_out. This variable will be used as the first
parameter in the Xgpio_Initialize function call
@ Add the variable to the function call. It should now look like the following:
XGpio Initialize(&gp out,

The second parameter is the device ID for the device that you want to initialize. This

information can be found in the xparameters.h file.

O Under the System BSP microblaze 0 instance, double-click the Generated Header:
microblaze_0/include/xparameters.h entry, as shown in Figure 10c-9
Writing Basic Software Applications Lab: http://riphah.edu.pk

MicroBlaze

/) RIPHAH
¢ | INTERNATIONAL
RIUALL UNIVERSITY

| Right Click for Optionz

EI--@ System BSP
L——_Im microblaze_0

oo @ Driver cpu_vl_00_a
® [Debug Peripheral: debug_module
® (15 standalone_1_00_a
. E |Generated Header: miu:r-:ul:ulazE_I:Ia’includef:-cparameters.h|
EEI---"|<_ mb_opb L})

- debug_module
..... :I:: imb
..... dirib

Figure 10c-9. Double-click the Generated Header File

e LibGen writes the xparameters.h file, and the file provides critical information for driver
function calls.

e This function call initializes the GPIO that is used as an output for the LEDs found on the
board. In the xparameters.h file, find the following #define used to identify the
LEDS_8BIT peripheral:

#define XPAR_LEDS_8BIT_DEVICE_ID 0 @==Note: The number might be different

Note: The LEDS_8BIT matches the instance name assigned in the MHS file for this
peripheral.

e This #define can be used as the device ID in the function call.

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

() RIPHAH
¢ | INTERNATIONAL
RIMAH, UNIVERSITY

© Add the device ID to the function call so that it looks like the following:
XGpio_Initialize(&gp_out, XPAR_LEDS _4BIT_DEVICE_ID);
The file should now look like Figure 10c-10.

o #Finclude "zparameters.h"

01 #include "zgpio.h"
0z

02 maini)

S
05 ¥Gpio gp_out:
06

a7 XOpio_Initialize(&gp_out, XPAR_LEDS_SBIT DEVICE_ID):
Figure 10c-10. Partially Completed C File
® Refer to the documentation to determine how to set all of the bits of the GP1O bus as

outputs. This will involve using the XGpio_SetDataDirection function call. Add code to
perform this function, and then save the file.

XGpio_SetDataDirection (&gp_out, 1, 0x00);

> Write a counter that continuously counts from 0 to 255 to drive the LEDs_8Bit
peripheral output. Output the current value of the counter by using the
appropriate function. Write a software pause for loop to pause the output between
each count.

O Write code to implement a counter that continuously counts from 0 to 255. The count will be
used to drive the output of the LEDs_8Bit peripheral

The following code is provided as an example:

while(1) {
j = (j+1) % 256; }

You will also need to include the declaration of the variable j.

© Output the current value of j to the LEDs_8Bit

2 4. Using the information in the gpio.h documentation (the gpio information in the
PDF file that is open), which function can be used?

© Add this function and the appropriate parameters to the C code

Note: Because the MicroBlaze™ processor does not have an internal timer or counter, a
delay loop must be created in the software.

® Add the following code to create a software delay to pause between each count that gets
displayed:

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

/) RIPHAH
¢ | INTERNATIONAL
RIUALL UNIVERSITY

IVE W

inti;
for(i=0; i<80000; i++);

© The final C program should look like Figure 10c-11

finclude "mparamsters. h'
finclude "=gpioc. h"

maini

iGpio gp_out
int i=0;

int 7=0;

iGpio_Initialize (&gp out, XPAR LEDS BBIT DEVICE ID):
iGpio_SetDatalirection (égp_out, 1. 0=x003:

while (1)
i = (i + 1) % 256;

Sewrite the walus of 7 to the LED=s
iGpio_ Discretellrite (&gp out, 1. 71);

s«z=of tware delay loop for pause
for (i=0; 1<10; 1i+4+3:

ks

ol b3 2 D00 mh AW R = O D00 @ th B RO

Figure 10c-11. Final C Program

® Save and close the file

@ Select the Application Tab, add the source code (system.c from the code
directory) and change the SW project TestApp so that TestApp.c is no longer
initialized in BRAM. Compile the source code.

© Click the Application tab to view the current project’s Compiler Options and Sources
e Right-click Project: TestApp and unselect Mark to Initialize BRAMs
o Verify that the small green arrow next to Project: MyProj does not have a red x through
it. If it does, Right-click Project: MyProj and toggle Mark to Initialize BRAMs.

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Q)

Systern Applications |Opfions | Symbols]

Right Click for Options

& Sofware Projects

X, Default microblaze_0_bootloop

&, Default microblaze_0_xmdstub
-« Project: TestApp

+-[B Processaor: microblaze_0

+ [Compiler Options
+ B Sources
[Headers

Make Project Inactive

B Executable: Chxuptembeddedlabs

+ [pr Set Compiler Optons...

Co Buid Project L
S Delete Project...

INTERNATIONAL
RIUALL UNIVERSITY

Figure 10c-12. Applications Tab for the Current Project

e © o o

Click the Directories tab to set the directory options.
e Change the Output ELF File entry to place the executable.elf file in the

Right-click Sources under Project: MyProj and select Add File
Browse to the code directory under the current project (lab4mb) and select the system.c file

Double-click Compiler Options under Project: MyProj in the Application tab

microblaze_0\code directory under the current project directory.

e For Linker Script Browse to the TestAppLinkScr file in the TestApp/Src directory.

e The directory options should be set as shown in Figure 10c-13

Writing Basic Software Applications Lab:
MicroBlaze

http://riphah.edu.pk

/) RIPHAH
INTERNATIONAL
RIUALL UNIVERSITY

Set Compiler settings for the project: MyProj R|

EnvironmenthptimizatiDn Directaries | Achvanced

All paths should be relative to the Project Directony
Multiple Options should be seperated by space
Search Paths

Compiler (B) |

Librany (-3 ‘

Include (- \

Linker Options
Libstalink ¢ |

Linker Script ‘b4mb\TestApp\src\TestAppLinkScd

Output Information

Output ELF File |s‘-,|ab4mb\microblaze_D\code\executable.elf

OI& | Cancel

Figure 10c-13. Assigning the Destination Directory for the Executable File

@ Click OK to accept the setting

@ Compile the C code by clicking the @ button

@ 5. After the program has compiled determine the sizes of the program sections:

.text section (code):
.data section (variables):

.bss section (heap and stack):

Total size in decimal:

Total size in hexadecimal:

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

RIPHAH
INTERNATIONAL

Linker Script Step 4

Compile the C code by clicking the %= putton. Change the directory to
c:/xup/embedded/labs/lab4mb/microblaze 0/ code. Execute the mb-objdump
—h executable.elf command in the Xygwin shell and analyze the output.

»

£
© Start a Xygwin shell by clicking the _*** button. This should place you in the project
directory.

© Change the directory to c:/xup/embedded/labs/lab4mb/microblaze_0/code by using the cd
command

© Type mb-objdump —h executable.elf at the prompt in the Xygwin shell window to list
various sections of the program, along with the starting address and size of each section
@ 6. From the objdump output, complete the following memory map table:

Note: There are many sections are listed in the output, only some of them are
being asked below

Section Starting Address | Ending Address Size in Hex
text
.rodata
.sdata?
.data
.sdata
.shss
.bss
.bss_stack

\:_;> 7. Looking at the objdump output, list the sections that consume no memory.

\¢> Open the TestAppLinkScr file and change the stack size to 0x100. Recompile
the code, re-execute the objdump command, and analyze the output.

© In XPS, double-click the TestAppLinkScr file under Compiler Options in the Applications
tab

© Change the stack size to 0x100
© Save the linker script

® Recompile the program

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

/) RIPHAH
¢ | INTERNATIONAL
RIUALL UNIVERSITY

© Execute the mb-objdump command in the Xygwin shell

\?> 8. From the object dump output, complete the following table:

Section Starting Address | Ending Address Size in Hex
.bss
.bss_stack

\.}> Define a heap space of 256 bytes, keeping the stack size to 256 in the linker
script. Add the heap space in the linker script after the stack allocation, as shown
below. Recompile the code, re-execute the objdump command, and analyze the
output.

_HEAP_SIZE = 256; /* heap size definition */

© Change the linker script file to include a heap definition of 256 bytes near the top of the linker
script as shown below. To do this, double click on the Linker Script under Project: MyProj

as follows:
=l ey Project: MyProj 2 ENTEY!
+-[B Processor microblaze_0 4

[Executable: C:Asuptembeddedilabs\labdmbmicrobls 5 o=)
. . =1 * [e=fj

—-[B Compiler Optionz = M
E |Unker5cﬂpt EﬁhxuphemheddedﬂahsﬂabdmbHTesh&pphmchTesb&ppUnkScd

E Mode: EXECUTABLE M4 | | hg I

Add the HEAP_SIZE definition near the top as shown below:

STACE SIZE = DEFIHED(STACK SIZE) ? STACE SIZE : 0=x100;
IHEAP SIZE 256: % heap =ize definition =~

<% Define all the memnory region= in the system *-

MEMORY

th B 03 B2 = O

® Add the three lines shown below to the .bss_stack section of the linker script as shown below

T » 1lmb _cntlr

i

3 b= _=tack : {
4 = ALIGH(8);
5 _heap = . ;

[}

T

2

=l

Ju}

.1

Z _=tack = . :

3 __=tack = _=stack:
4

5

5

© Save the linker script

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

RIPHAH
INTERNATIONAL

® Recompile the code

© Execute the mb-objdump command in the Xygwin shell

@ 9. From the object dump output, complete the following table:

Section Starting Address | Ending Address Size in Hex

.bss

.bss_stack

@ Edit the system.c file to define a local variable, k, initialized with a value of 0,
and increment it by 1 inside the for loop. Recompile the code, re-execute the
objdump command, and analyze the output.

© Change the system.c file to define a local variable and increment it in the for loop
The code should look like the following:
main() {
XGpio gp_out;
int j=0;
int i=0;
int k=0; /* add this statement */

XGpio_Initialize(&gp_out, XPAR_LEDS 8BIT_DEVICE_ID);
XGpio_SetDataDirection(&gp_out, 1, 0x00);

while(1) {

i=(+1) % 256;
k =k + 1; /* add this statement */

© Save the system.c file
© Recompile the code

® Execute the mb-objdump command in the Xygwin shell

@ 10. From the object dump output, complete the following table:

Section Starting Address | Ending Address Size in Hex

text

@ 11. Has the .text section changed? Why or why not?

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

RIPHAH
INTERNATIONAL

@ Edit the system.c file to add a statement that will output the value of the variable
k to the LEDs. Recompile the code, re-execute the objdump command, and
analyze the output.

© Change the system.c file to add a statement that outputs the value of variable k to the LEDs
The code should look like the following:
main() {
XGpio gp_out;
int j=0;
int i=0;
int k=0;

XGpio_Initialize(&gp_out, XPAR_LEDS 4BIT_DEVICE_ID);
XGpio_SetDataDirection(&gp_out, 1, 0x00);

while(1) {
j=(+1) % 16;
k=k+1;
/l write the value of j to the LEDs
XGpio_DiscreteWrite(&gp_out, 1, j);
XGpio_DiscreteWrite(&gp_out, 1, k);

/I software delay loop for pause
for(i=0; i<10; i++);

¥
¥

® Save the system.c file
© Recompile the code

® Execute the mb-objdump command in the Xygwin shell

@ 10. From the object dump output, complete the following table:

Section Starting Address | Ending Address Size in Hex

text

@ 11. Has the .text section changed? Why or why not?

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

RIPHAH
INTERNATIONAL

Verifying in Hardware (Optional) Step 5

@ In the system.c file, comment out all lines which refer to or use the variable k and
save the file. Connect the hardware board for which you have developed this lab
(Spartan3 Starter Kit board). Create a bitstream file.

O © ®© 6 o ©o

Connect the included programming cable to the PC parallel port and the Spartan3 Board
Connect a serial cable between the PC and the DB-9 connector on the board.

Attach the included power supply to the board.

In the source code file, comment out all lines which refer to variable k

Change i<10 to i<400000 in the for loop and save the file

Recompile the source file

Click Tools — Update Bitstream and implement and generate the BIT file

@ Download the generated bitstream file into the hardware board by using a Parallel
programming cable. Verify that the board is programmed and the LEDs are
turning ON and OFF in proper sequence.

o

2]

Download the generated bit file by clicking Tools — Download

After the board is programmed, you will see that the LEDs are turning ON and OFF in the
desired sequence

e Note: The LEDs are connected in such a way that “1” will turn OFF the LED

Turn off the power when done

Conclusion

XPS can be used to define, develop, and integrate the software components of the embedded
system. A device driver interface can be defined for each of the peripherals and the processor.
XPS creates an MSS file that represents the software side of the processor system. The peripheral-
specific functional software can be developed and compiled. The executable file can be generated
from the compiled object codes and libraries. The linker script can be edited to control placement
of various code segments into target memory.

Writing Basic Software Applications Lab: http://riphah.edu.pk

MicroBlaze

