

Lab 14

Writing Basic Software Applications

Lab: MicroBlaze

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Writing Basic Software Applications Lab:
MicroBlaze

Introduction

This lab guides you through the process of writing a basic software application. The software will

write to one of the OPB GPIOs; LEDs. Xilinx Platform Studio (XPS) will write the code and

create an MSS file for LibGen.

Objectives

After completing this lab, you will be able to:

 Write a basic application to access an IP peripheral

 Utilize XPS to generate a MSS file

 Generate a bit file

 Download the bit file and verify in hardware (if hardware is available)

 Develop a simple linker script

Procedure

The first three labs defined the hardware for the processor system. This lab comprises several

steps, including the writing of a basic software application to access one of the peripherals

specified in Lab2mb. Below each general instruction for a given procedure, you will find

accompanying step-by-step directions and illustrated figures providing more detail for performing

the general instruction. If you feel confident about a specific instruction, feel free to skip the step-

by-step directions and move on to the next general instruction in the procedure.

Note: If you are unable to complete the lab at this time, you can download the lab files for this

module from the Xilinx University Program site at http://university.xilinx.com

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Opening the Project Step 1

 Create a lab14mb folder in the c:\xup\embedded\labs directory. If you wish to continue with

your completed design from lab3 then copy the contents of the lab3mb folder into the

lab4mb folder, otherwise, if you wish to start with a known good design, then copy the

contents of c:\xup\embedded\mb_completed\lab3mb into the lab4mb directory.

 Open XPS by clicking Start  Programs  Xilinx Platform Studio  Xilinx Platform

Studio

 Click File  Open Project and browse to the project which in the directory:

c:\xup\embedded\labs\lab14mb

 Click system.xmp to open the project

Creating a BSP Step 2

Specify the MicroBlaze™ processor standalone operating system and driver

interface level.

The BSP is created based upon the peripherals included in the design.

 Double-click microblaze_0 from the System BSP hierarchy, as shown in Figure 10c-1. You

can also open the same dialog box by clicking Project  Software Platform Settings

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Figure 10c-1. Opening S/W Settings for the microblaze_0 Instance

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

This will open the Software Platform Settings dialog with the Software Platform tab.

Figure 10c-2. Software Platform Settings for the microblaze_0 Instance

 In the Software Platform tab, the Driver can be selected for each of the peripherals in the

system. You can also select the Kernel and Operating Systems for each of the processor

instances. In addition, supporting libraries can be selected if they will be used. Make sure that

the settings are as displayed in Figure 10c-2

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

 Click on the Processor and Driver Parameters tab and specify the following parameters:

Processor Parameters: Instance

compiler – mb-gcc

archiver – mb-ar

EXTRA_COMPILER_FLAGS – -g

xmdstub_peripheral – none

CORE_CLOCK_FREQ_HZ – 50000000

Driver Parameters: Instance

Leave Blank

Figure 10c-3. Processor and Driver Parameters Tab of the Software Platform
Settings for the microblaze_0 Instance

 Click the Library/OS Parameters tab

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Figure 10c-4. Library/OS Parameters Tab of the Software Platform Settings for
the microblaze_0 Instance

 Click the Current Value field for stdin and select RS232. Similarly, click the Current

Value field for stdout and select RS232. This will assign the uart device as the stdin and

stdout. Base System Builder already set these when the RS232 peripheral was included. If a

system does not have any stdin/stdout devices, then keep the current value as None. Leave

the Current Value for need_xil_malloc as false because your application does not use any

malloc function call

 Click OK to accept the settings

Generate the BSP.

 Double-click the system.mss file under the System tab in XPS, as shown in Figure 10c-5

This will open the MSS file for this project.

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Figure 10c-5. System Tab

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

 XPS has written the parameters that are specified in the Peripheral Options to the

system.mss file

1. List the assigned driver to each of the following peripheral instances:

mb_opb:

debug_module:

dlmb_cntlr:

ilmb_cntlr:

LEDs_8Bit:

Push_Buttons_3Bit:

DIP_Switches_8Bit:

delay:

RS232:

opb_7segled_0:

2. Why do some of the above mentioned devices not have a specific driver?

 Close the system.mss file

 Generate the BSP by clicking Tools  Generate Libraries or click the button

This will run LibGen on the system.mss file to generate the BSP library files.

3. List the created subfolders, their contents, and their possible purposes under the

microblaze_0 folder in the lab4mb folder.

?

?

?

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Creating a Basic C File Step 3

Add a software project and create a basic C file to write data to the LEDs_8Bit

peripheral.

 In the Applications Tab double Click on Software Projects

This will open a dialog box to create a new project

Figure 10c-6. New Project

 Enter the name MyProj and click OK.

 Click File  New

This will open a dialog box to create a new project

This will open a new document in the XPS editor

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Figure 10c-7. New Document in the XPS Editor

The first step is to add the header files for the required functions. All of the header files related to

this project were placed in the microblaze_0/include directory when LibGen was run.

 Add the following to the C file:

 #include "xparameters.h"

 #include "xgpio.h"

 Click File  Save As

This will open the Save As dialog.

 Create a new directory named code in the lab4mb directory and save the file as system.c, as

shown in Figure 10c-8

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Figure 10c-8. Save As Dialog

 Add the following to the C file

main() {

The first step in main is to initialize the GPIO peripheral

Write a main() function that will initialize and set the data direction for the

LEDs_8Bit peripheral to output.

 From the Windows start menu Click Start  Programs  Xilinx Platform Studio 6.2i 

EDK 6.2 Documentation

 Click the Documents link

 Scroll down and click Driver Reference Guide

This will open the xilinx_drivers.pdf file.

 In Acrobat Reader, click and search for the XGpio_Initialize function. You may have

to click Find Next to observe the function description page

 This documentation contains a detailed description of the XGpio_Initialize function

 The documentation outlines two parameters that XGpio_Initialize requires:

 InstancePtr is a pointer to an XGpio instance. The memory that the pointer references

must be preallocated by the caller. Further calls to manipulate the component through the
XGpio API must be made with this pointer.

 DeviceId is the unique ID of the device controlled by this XGpio component. Passing in a

device ID associates the generic XGpio instance to a specific device, as chosen by the

caller or application developer.

 Define an XGpio type variable named gp_out. This variable will be used as the first

parameter in the Xgpio_Initialize function call

 Add the variable to the function call. It should now look like the following:

 XGpio_Initialize(&gp_out,

The second parameter is the device ID for the device that you want to initialize. This

information can be found in the xparameters.h file.

 Under the System BSP microblaze_0 instance, double-click the Generated Header:

microblaze_0/include/xparameters.h entry, as shown in Figure 10c-9

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Figure 10c-9. Double-click the Generated Header File

 LibGen writes the xparameters.h file, and the file provides critical information for driver

function calls.

 This function call initializes the GPIO that is used as an output for the LEDs found on the

board. In the xparameters.h file, find the following #define used to identify the

LEDS_8BIT peripheral:

#define XPAR_LEDS_8BIT_DEVICE_ID 0

Note: The LEDS_8BIT matches the instance name assigned in the MHS file for this

peripheral.

 This #define can be used as the device ID in the function call.

Note: The number might be different

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

 Add the device ID to the function call so that it looks like the following:

 XGpio_Initialize(&gp_out, XPAR_LEDS_4BIT_DEVICE_ID);

The file should now look like Figure 10c-10.

Figure 10c-10. Partially Completed C File

 Refer to the documentation to determine how to set all of the bits of the GPIO bus as

outputs. This will involve using the XGpio_SetDataDirection function call. Add code to

perform this function, and then save the file.

XGpio_SetDataDirection (&gp_out, 1, 0x00);

Write a counter that continuously counts from 0 to 255 to drive the LEDs_8Bit

peripheral output. Output the current value of the counter by using the

appropriate function. Write a software pause for loop to pause the output between

each count.

 Write code to implement a counter that continuously counts from 0 to 255. The count will be

used to drive the output of the LEDs_8Bit peripheral

The following code is provided as an example:

 while(1) {

 j = (j+1) % 256; }

 You will also need to include the declaration of the variable j.

 Output the current value of j to the LEDs_8Bit

4. Using the information in the gpio.h documentation (the gpio information in the

PDF file that is open), which function can be used?

 Add this function and the appropriate parameters to the C code

Note: Because the MicroBlaze™ processor does not have an internal timer or counter, a

delay loop must be created in the software.

 Add the following code to create a software delay to pause between each count that gets

displayed:

?

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

int i;

for(i=0; i<80000; i++);

 The final C program should look like Figure 10c-11

Figure 10c-11. Final C Program

 Save and close the file

Select the Application Tab, add the source code (system.c from the code

directory) and change the SW project TestApp so that TestApp.c is no longer

initialized in BRAM. Compile the source code.

 Click the Application tab to view the current project’s Compiler Options and Sources

 Right-click Project: TestApp and unselect Mark to Initialize BRAMs

 Verify that the small green arrow next to Project: MyProj does not have a red x through

it. If it does, Right-click Project: MyProj and toggle Mark to Initialize BRAMs.

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Figure 10c-12. Applications Tab for the Current Project

 Right-click Sources under Project: MyProj and select Add File

 Browse to the code directory under the current project (lab4mb) and select the system.c file

 Double-click Compiler Options under Project: MyProj in the Application tab

 Click the Directories tab to set the directory options.

 Change the Output ELF File entry to place the executable.elf file in the

microblaze_0\code directory under the current project directory.

 For Linker Script Browse to the TestAppLinkScr file in the TestApp/Src directory.

 The directory options should be set as shown in Figure 10c-13

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Figure 10c-13. Assigning the Destination Directory for the Executable File

 Click OK to accept the setting

 Compile the C code by clicking the button

5. After the program has compiled determine the sizes of the program sections:

.text section (code):

.data section (variables):

.bss section (heap and stack):

Total size in decimal:

Total size in hexadecimal:

?

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Linker Script Step 4

Compile the C code by clicking the button. Change the directory to

c:/xup/embedded/labs/lab4mb/microblaze_0/ code. Execute the mb-objdump

–h executable.elf command in the Xygwin shell and analyze the output.

 Start a Xygwin shell by clicking the button. This should place you in the project

directory.

 Change the directory to c:/xup/embedded/labs/lab4mb/microblaze_0/code by using the cd

command

 Type mb-objdump –h executable.elf at the prompt in the Xygwin shell window to list

various sections of the program, along with the starting address and size of each section

6. From the objdump output, complete the following memory map table:

Note: There are many sections are listed in the output, only some of them are

being asked below

Section Starting Address Ending Address Size in Hex

.text

.rodata

.sdata2

.data

.sdata

.sbss

.bss

.bss_stack

7. Looking at the objdump output, list the sections that consume no memory.

Open the TestAppLinkScr file and change the stack size to 0x100. Recompile

the code, re-execute the objdump command, and analyze the output.

 In XPS, double-click the TestAppLinkScr file under Compiler Options in the Applications

tab

 Change the stack size to 0x100

 Save the linker script

 Recompile the program

?

?

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

 Execute the mb-objdump command in the Xygwin shell

8. From the object dump output, complete the following table:

Section Starting Address Ending Address Size in Hex

.bss

.bss_stack

Define a heap space of 256 bytes, keeping the stack size to 256 in the linker

script. Add the heap space in the linker script after the stack allocation, as shown

below. Recompile the code, re-execute the objdump command, and analyze the

output.

_HEAP_SIZE = 256; /* heap size definition */

 Change the linker script file to include a heap definition of 256 bytes near the top of the linker

script as shown below. To do this, double click on the Linker Script under Project: MyProj

as follows:

 Add the _HEAP_SIZE definition near the top as shown below:

 Add the three lines shown below to the .bss_stack section of the linker script as shown below

 Save the linker script

?

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

 Recompile the code

 Execute the mb-objdump command in the Xygwin shell

9. From the object dump output, complete the following table:

Section Starting Address Ending Address Size in Hex

.bss

.bss_stack

Edit the system.c file to define a local variable, k, initialized with a value of 0,

and increment it by 1 inside the for loop. Recompile the code, re-execute the

objdump command, and analyze the output.

 Change the system.c file to define a local variable and increment it in the for loop

The code should look like the following:

main() {

 XGpio gp_out;

 int j=0;

 int i=0;

 int k=0; /* add this statement */

 XGpio_Initialize(&gp_out, XPAR_LEDS_8BIT_DEVICE_ID);

 XGpio_SetDataDirection(&gp_out, 1, 0x00);

 while(1) {

 j = (j + 1) % 256;

 k = k + 1; /* add this statement */

 Save the system.c file

 Recompile the code

 Execute the mb-objdump command in the Xygwin shell

10. From the object dump output, complete the following table:

Section Starting Address Ending Address Size in Hex

.text

11. Has the .text section changed? Why or why not?

?

?

?

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Edit the system.c file to add a statement that will output the value of the variable

k to the LEDs. Recompile the code, re-execute the objdump command, and

analyze the output.

 Change the system.c file to add a statement that outputs the value of variable k to the LEDs

The code should look like the following:

main() {

 XGpio gp_out;

 int j=0;

 int i=0;

 int k=0;

 XGpio_Initialize(&gp_out, XPAR_LEDS_4BIT_DEVICE_ID);

 XGpio_SetDataDirection(&gp_out, 1, 0x00);

 while(1) {

 j = (j + 1) % 16;

 k = k + 1;

 // write the value of j to the LEDs

 XGpio_DiscreteWrite(&gp_out, 1, j);

 XGpio_DiscreteWrite(&gp_out, 1, k);

 // software delay loop for pause

 for(i=0; i<10; i++);

 }

}

 Save the system.c file

 Recompile the code

 Execute the mb-objdump command in the Xygwin shell

10. From the object dump output, complete the following table:

Section Starting Address Ending Address Size in Hex

.text

11. Has the .text section changed? Why or why not?

?

?

Writing Basic Software Applications Lab: http://riphah.edu.pk
MicroBlaze

Verifying in Hardware (Optional) Step 5

In the system.c file, comment out all lines which refer to or use the variable k and

save the file. Connect the hardware board for which you have developed this lab

(Spartan3 Starter Kit board). Create a bitstream file.

 Connect the included programming cable to the PC parallel port and the Spartan3 Board

 Connect a serial cable between the PC and the DB-9 connector on the board.

 Attach the included power supply to the board.

 In the source code file, comment out all lines which refer to variable k

 Change i<10 to i<400000 in the for loop and save the file

 Recompile the source file

 Click Tools  Update Bitstream and implement and generate the BIT file

Download the generated bitstream file into the hardware board by using a Parallel

programming cable. Verify that the board is programmed and the LEDs are

turning ON and OFF in proper sequence.

 Download the generated bit file by clicking Tools  Download

 After the board is programmed, you will see that the LEDs are turning ON and OFF in the

desired sequence

 Note: The LEDs are connected in such a way that “1” will turn OFF the LED

 Turn off the power when done

Conclusion

XPS can be used to define, develop, and integrate the software components of the embedded

system. A device driver interface can be defined for each of the peripherals and the processor.

XPS creates an MSS file that represents the software side of the processor system. The peripheral-

specific functional software can be developed and compiled. The executable file can be generated

from the compiled object codes and libraries. The linker script can be edited to control placement

of various code segments into target memory.

