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Linear Regression

● It is used to estimate real values (cost of 
houses, number of calls, total sales etc.) 
based on continuous variable(s). Here, we 
establish relationship between 
independent and dependent variables by 
fitting a best line. This best fit line is known 
as regression line and represented by a 
linear equation Y= a *X + b.



● #Import Library
● #Import other necessary libraries like pandas, numpy...
● from sklearn import linear_model
● #Load Train and Test datasets
● #Identify feature and response variable(s) and values must be numeric and numpy arrays
● x_train=input_variables_values_training_datasets
● y_train=target_variables_values_training_datasets
● x_test=input_variables_values_test_datasets
● # Create linear regression object
● linear = linear_model.LinearRegression()
● # Train the model using the training sets and check score
● linear.fit(x_train, y_train)
● linear.score(x_train, y_train)
● #Equation coefficient and Intercept
● print('Coefficient: \n', linear.coef_)
● print('Intercept: \n', linear.intercept_)
● #Predict Output
● predicted= linear.predict(x_test)



Logistic Regression

● It is used to estimate discrete values ( Binary 
values like 0/1, yes/no, true/false ) based on 
given set of independent variable(s). 

● In simple words, it predicts the probability of 
occurrence of an event by fitting data to a logit 
function. Hence, it is also known as logit 
regression. Since, it predicts the probability, its 
output values lies between 0 and 1 (as 
expected).



#Import Library

from sklearn.linear_model import LogisticRegression

#Assumed you have, X (predictor) and Y (target) for training data 
set and x_test(predictor) of test_dataset

# Create logistic regression object

model = LogisticRegression()

# Train the model using the training sets and check score

model.fit(X, y)

model.score(X, y)

#Equation coefficient and Intercept

print('Coefficient: \n', model.coef_)

print('Intercept: \n', model.intercept_)

#Predict Output

predicted= model.predict(x_test)



Decision Tree
●  It is a type of supervised learning algorithm that is mostly used for 

classification problems. 
● Surprisingly, it works for both categorical and continuous 

dependent variables. 
● Decision Tree split the population into two or more homogeneous 

sets. This is done based on most significant attributes/ 
independent variables to make as distinct groups as possible. 



# Import Library
#I mport other necessary libraries like pandas, numpy...
from sklearn import tree
#Assumed you have, X (predictor) and Y (target) for training data set and 
x_test(predictor) of test_dataset
# Create tree object 
model = tree.DecisionTreeClassifier(criterion='gini') # for classification, 
here you can change the algorithm as gini or entropy (information gain) 
by default it is gini  
# model = tree.DecisionTreeRegressor() for regression
# Train the model using the training sets and check score
model.fit(X, y)
model.score(X, y)
#Predict Output
predicted= model.predict(x_test)



SVM (Support Vector Machine)

It is a classification method. The algorithm is 
used to plot each data item as a point in n-
dimensional space (where n is number of 
features you have) with the value of each 
feature being the value of a particular 
coordinate.



● #Import Library
● from sklearn import svm
● #Assumed you have, X (predictor) and Y (target) for training data set and 

x_test(predictor) of test_dataset
● # Create SVM classification object 
● model = svm.svc() # there is various option associated with it, this is simple for 

classification. You can refer link, for mo# re detail.
● # Train the model using the training sets and check score
● model.fit(X, y)
● model.score(X, y)
● #Predict Output
● predicted= model.predict(x_test)



Naive Bayes

It is a classification technique based on Bayes’ theorem 
with an assumption of independence between 
predictors. In simple terms, a Naive Bayes classifier 
assumes that the presence of a particular feature in a 
class is unrelated to the presence of any other feature. 
For example, a fruit may be considered to be an apple if 
it is red, round, and about 3 inches in diameter. Even if 
these features depend on each other or upon the 
existence of the other features, a naive Bayes classifier 
would consider all of these properties to independently 
contribute to the probability that this fruit is an apple.



#Import Library

from sklearn.naive_bayes import GaussianNB

#Assumed you have, X (predictor) and Y (target) for training data set 
and x_test(predictor) of test_dataset

# Create SVM classification object model = GaussianNB() # there is 
other distribution for multinomial classes like Bernoulli Naive Bayes, 
Refer link

# Train the model using the training sets and check score

model.fit(X, y)

#Predict Output

predicted= model.predict(x_test)



kNN (k- Nearest Neighbors)
It can be used for both classification and regression problems. 

● However, it is more widely used in classification problems in the industry. K 
nearest neighbors is a simple algorithm that stores all available cases and 
classifies new cases by a majority vote of its k neighbors. The case being 
assigned to the class is most common amongst its K nearest neighbors 
measured by a distance function.
– KNN is computationally expensive
– Variables should be normalized else higher range variables can bias it
– Works on pre-processing stage more before going for kNN like outlier, noise removal



#Import Library

from sklearn.neighbors import KNeighborsClassifier

#Assumed you have, X (predictor) and Y (target) for training data set and 
x_test(predictor) of test_dataset

# Create KNeighbors classifier object model 

KNeighborsClassifier(n_neighbors=6) # default value for n_neighbors is 5

# Train the model using the training sets and check score

model.fit(X, y)

#Predict Output

predicted= model.predict(x_test)



 K-Means
● t is a type of unsupervised algorithm which  solves the clustering 

problem. Its procedure follows a simple and easy  way to classify a 
given data set through a certain number of  clusters (assume k 
clusters). Data points inside a cluster are homogeneous and 
heterogeneous to peer groups.

● How K-means forms cluster:
– K-means picks k number of points for each cluster known as centroids.

– Each data point forms a cluster with the closest centroids i.e. k clusters.

– Finds the centroid of each cluster based on existing cluster members. Here we 
have new centroids.

– As we have new centroids, repeat step 2 and 3. Find the closest distance for 
each data point from new centroids and get associated with new k-clusters. 
Repeat this process until convergence occurs i.e. centroids does not change.



● How to determine value of K:

In K-means, we have clusters and each cluster has its own centroid. 
Sum of square of difference between centroid and the data points 
within a cluster constitutes within sum of square value for that cluster. 
Also, when the sum of square values for all the clusters are added, it 
becomes total within sum of square value for the cluster solution.

We know that as the number of cluster increases, this value keeps on 
decreasing but if you plot the result you may see that the sum of 
squared distance decreases sharply up to some value of k, and then 
much more slowly after that. Here, we can find the optimum number of 
cluster.



#Import Library

from sklearn.cluster import KMeans

#Assumed you have, X (attributes) for training data set and 
x_test(attributes) of test_dataset

# Create KNeighbors classifier object model 

k_means = KMeans(n_clusters=3, random_state=0)

# Train the model using the training sets and check score

model.fit(X)

#Predict Output

predicted= model.predict(x_test)



Random Forest
● Random Forest is a trademark term for an ensemble of decision trees. In 

Random Forest, we’ve collection of decision trees (so known as “Forest”). 
To classify a new object based on attributes, each tree gives a 
classification and we say the tree “votes” for that class. The forest chooses 
the classification having the most votes (over all the trees in the forest).

● Each tree is planted & grown as follows:
– If the number of cases in the training set is N, then sample of N cases is taken at 

random but with replacement. This sample will be the training set for growing the 
tree.

– If there are M input variables, a number m<<M is specified such that at each node, 
m variables are selected at random out of the M and the best split on these m is 
used to split the node. The value of m is held constant during the forest growing.

– Each tree is grown to the largest extent possible. There is no pruning.



● #Import Library
● from sklearn.ensemble import RandomForestClassifier
● #Assumed you have, X (predictor) and Y (target) for training data 

set and x_test(predictor) of test_dataset
● # Create Random Forest object
● model= RandomForestClassifier()
● # Train the model using the training sets and check score
● model.fit(X, y)
● #Predict Output
● predicted= model.predict(x_test)



Dimensionality Reduction Algorithms

● Dimension Reduction refers to the process of 
converting a set of data having vast 
dimensions into data with lesser dimensions 
ensuring that it conveys similar information 
concisely. 

● These techniques are typically used while 
solving machine learning problems to obtain 
better features for a classification or regression 
task.



Importance
● It helps in data compressing and reducing the storage space required
● It fastens the time required for performing same computations. Less 

dimensions leads to less computing, also less dimensions can allow 
usage of algorithms unfit for a large number of dimensions

● It takes care of multi-collinearity that improves the model performance. 
It removes redundant features. For example: there is no point in storing 
a value in two different units (meters and inches).

● Reducing the dimensions of data to 2D or 3D may allow us to plot and 
visualize it precisely. You can then observe patterns more clearly. 
Below you can see that, how a 3D data is converted into 2D. First it 
has identified the 2D plane then represented the points on these two 
new axis z1 and z2.



● #Import Library
● from sklearn import decomposition
● #Assumed you have training and test data set as train and test
● # Create PCA obeject pca= decomposition.PCA(n_components=k) 

#default value of k =min(n_sample, n_features)
● # For Factor analysis
● #fa= decomposition.FactorAnalysis()
● # Reduced the dimension of training dataset using PCA
● train_reduced = pca.fit_transform(train)
● #Reduced the dimension of test dataset
● test_reduced = pca.transform(test)



Gradient Boosting Algorithms

● GBM is a boosting algorithm used when we deal 
with plenty of data to make a prediction with high 
prediction power. Boosting is actually an 
ensemble of learning algorithms which combines 
the prediction of several base estimators in order 
to improve robustness over a single estimator. It 
combines multiple weak or average predictors to a 
build strong predictor. These boosting algorithms 
always work well in data science competitions like 
Kaggle, AV Hackathon, CrowdAnalytix.



#Import Library

from sklearn.ensemble import GradientBoostingClassifier

#Assumed you have, X (predictor) and Y (target) for training data set and 
x_test(predictor) of test_dataset

# Create Gradient Boosting Classifier object

model= GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, 
max_depth=1, random_state=0)

# Train the model using the training sets and check score

model.fit(X, y)

#Predict Output

predicted= model.predict(x_test)
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