
Machine Learning Algorithms
Classifiers and Models

Dr. Tassadaq Hussain
Assistant Professor Riphah International University

Collaborations:
Microsoft Research and Barcelona Supercomputing Center

Barcelona, Spain
UCERD Pvt Ltd Islamabad

● Linear Regression
● Logistic Regression
● Decision Tree
● SVM
● Naive Bayes
● kNN
● K-Means
● Random Forest
● Dimensionality Reduction Algorithms
● Gradient Boosting algorithms
● GBM
● XGBoost
● LightGBM
● CatBoost

Linear Regression

● It is used to estimate real values (cost of
houses, number of calls, total sales etc.)
based on continuous variable(s). Here, we
establish relationship between
independent and dependent variables by
fitting a best line. This best fit line is known
as regression line and represented by a
linear equation Y= a *X + b.

● #Import Library
● #Import other necessary libraries like pandas, numpy...
● from sklearn import linear_model
● #Load Train and Test datasets
● #Identify feature and response variable(s) and values must be numeric and numpy arrays
● x_train=input_variables_values_training_datasets
● y_train=target_variables_values_training_datasets
● x_test=input_variables_values_test_datasets
● # Create linear regression object
● linear = linear_model.LinearRegression()
● # Train the model using the training sets and check score
● linear.fit(x_train, y_train)
● linear.score(x_train, y_train)
● #Equation coefficient and Intercept
● print('Coefficient: \n', linear.coef_)
● print('Intercept: \n', linear.intercept_)
● #Predict Output
● predicted= linear.predict(x_test)

Logistic Regression

● It is used to estimate discrete values (Binary
values like 0/1, yes/no, true/false) based on
given set of independent variable(s).

● In simple words, it predicts the probability of
occurrence of an event by fitting data to a logit
function. Hence, it is also known as logit
regression. Since, it predicts the probability, its
output values lies between 0 and 1 (as
expected).

#Import Library

from sklearn.linear_model import LogisticRegression

#Assumed you have, X (predictor) and Y (target) for training data
set and x_test(predictor) of test_dataset

Create logistic regression object

model = LogisticRegression()

Train the model using the training sets and check score

model.fit(X, y)

model.score(X, y)

#Equation coefficient and Intercept

print('Coefficient: \n', model.coef_)

print('Intercept: \n', model.intercept_)

#Predict Output

predicted= model.predict(x_test)

Decision Tree
● It is a type of supervised learning algorithm that is mostly used for

classification problems.
● Surprisingly, it works for both categorical and continuous

dependent variables.
● Decision Tree split the population into two or more homogeneous

sets. This is done based on most significant attributes/
independent variables to make as distinct groups as possible.

Import Library
#I mport other necessary libraries like pandas, numpy...
from sklearn import tree
#Assumed you have, X (predictor) and Y (target) for training data set and
x_test(predictor) of test_dataset
Create tree object
model = tree.DecisionTreeClassifier(criterion='gini') # for classification,
here you can change the algorithm as gini or entropy (information gain)
by default it is gini
model = tree.DecisionTreeRegressor() for regression
Train the model using the training sets and check score
model.fit(X, y)
model.score(X, y)
#Predict Output
predicted= model.predict(x_test)

SVM (Support Vector Machine)

It is a classification method. The algorithm is
used to plot each data item as a point in n-
dimensional space (where n is number of
features you have) with the value of each
feature being the value of a particular
coordinate.

● #Import Library
● from sklearn import svm
● #Assumed you have, X (predictor) and Y (target) for training data set and

x_test(predictor) of test_dataset
● # Create SVM classification object
● model = svm.svc() # there is various option associated with it, this is simple for

classification. You can refer link, for mo# re detail.
● # Train the model using the training sets and check score
● model.fit(X, y)
● model.score(X, y)
● #Predict Output
● predicted= model.predict(x_test)

Naive Bayes

It is a classification technique based on Bayes’ theorem
with an assumption of independence between
predictors. In simple terms, a Naive Bayes classifier
assumes that the presence of a particular feature in a
class is unrelated to the presence of any other feature.
For example, a fruit may be considered to be an apple if
it is red, round, and about 3 inches in diameter. Even if
these features depend on each other or upon the
existence of the other features, a naive Bayes classifier
would consider all of these properties to independently
contribute to the probability that this fruit is an apple.

#Import Library

from sklearn.naive_bayes import GaussianNB

#Assumed you have, X (predictor) and Y (target) for training data set
and x_test(predictor) of test_dataset

Create SVM classification object model = GaussianNB() # there is
other distribution for multinomial classes like Bernoulli Naive Bayes,
Refer link

Train the model using the training sets and check score

model.fit(X, y)

#Predict Output

predicted= model.predict(x_test)

kNN (k- Nearest Neighbors)
It can be used for both classification and regression problems.

● However, it is more widely used in classification problems in the industry. K
nearest neighbors is a simple algorithm that stores all available cases and
classifies new cases by a majority vote of its k neighbors. The case being
assigned to the class is most common amongst its K nearest neighbors
measured by a distance function.
– KNN is computationally expensive
– Variables should be normalized else higher range variables can bias it
– Works on pre-processing stage more before going for kNN like outlier, noise removal

#Import Library

from sklearn.neighbors import KNeighborsClassifier

#Assumed you have, X (predictor) and Y (target) for training data set and
x_test(predictor) of test_dataset

Create KNeighbors classifier object model

KNeighborsClassifier(n_neighbors=6) # default value for n_neighbors is 5

Train the model using the training sets and check score

model.fit(X, y)

#Predict Output

predicted= model.predict(x_test)

 K-Means
● t is a type of unsupervised algorithm which solves the clustering

problem. Its procedure follows a simple and easy way to classify a
given data set through a certain number of clusters (assume k
clusters). Data points inside a cluster are homogeneous and
heterogeneous to peer groups.

● How K-means forms cluster:
– K-means picks k number of points for each cluster known as centroids.

– Each data point forms a cluster with the closest centroids i.e. k clusters.

– Finds the centroid of each cluster based on existing cluster members. Here we
have new centroids.

– As we have new centroids, repeat step 2 and 3. Find the closest distance for
each data point from new centroids and get associated with new k-clusters.
Repeat this process until convergence occurs i.e. centroids does not change.

● How to determine value of K:

In K-means, we have clusters and each cluster has its own centroid.
Sum of square of difference between centroid and the data points
within a cluster constitutes within sum of square value for that cluster.
Also, when the sum of square values for all the clusters are added, it
becomes total within sum of square value for the cluster solution.

We know that as the number of cluster increases, this value keeps on
decreasing but if you plot the result you may see that the sum of
squared distance decreases sharply up to some value of k, and then
much more slowly after that. Here, we can find the optimum number of
cluster.

#Import Library

from sklearn.cluster import KMeans

#Assumed you have, X (attributes) for training data set and
x_test(attributes) of test_dataset

Create KNeighbors classifier object model

k_means = KMeans(n_clusters=3, random_state=0)

Train the model using the training sets and check score

model.fit(X)

#Predict Output

predicted= model.predict(x_test)

Random Forest
● Random Forest is a trademark term for an ensemble of decision trees. In

Random Forest, we’ve collection of decision trees (so known as “Forest”).
To classify a new object based on attributes, each tree gives a
classification and we say the tree “votes” for that class. The forest chooses
the classification having the most votes (over all the trees in the forest).

● Each tree is planted & grown as follows:
– If the number of cases in the training set is N, then sample of N cases is taken at

random but with replacement. This sample will be the training set for growing the
tree.

– If there are M input variables, a number m<<M is specified such that at each node,
m variables are selected at random out of the M and the best split on these m is
used to split the node. The value of m is held constant during the forest growing.

– Each tree is grown to the largest extent possible. There is no pruning.

● #Import Library
● from sklearn.ensemble import RandomForestClassifier
● #Assumed you have, X (predictor) and Y (target) for training data

set and x_test(predictor) of test_dataset
● # Create Random Forest object
● model= RandomForestClassifier()
● # Train the model using the training sets and check score
● model.fit(X, y)
● #Predict Output
● predicted= model.predict(x_test)

Dimensionality Reduction Algorithms

● Dimension Reduction refers to the process of
converting a set of data having vast
dimensions into data with lesser dimensions
ensuring that it conveys similar information
concisely.

● These techniques are typically used while
solving machine learning problems to obtain
better features for a classification or regression
task.

Importance
● It helps in data compressing and reducing the storage space required
● It fastens the time required for performing same computations. Less

dimensions leads to less computing, also less dimensions can allow
usage of algorithms unfit for a large number of dimensions

● It takes care of multi-collinearity that improves the model performance.
It removes redundant features. For example: there is no point in storing
a value in two different units (meters and inches).

● Reducing the dimensions of data to 2D or 3D may allow us to plot and
visualize it precisely. You can then observe patterns more clearly.
Below you can see that, how a 3D data is converted into 2D. First it
has identified the 2D plane then represented the points on these two
new axis z1 and z2.

● #Import Library
● from sklearn import decomposition
● #Assumed you have training and test data set as train and test
● # Create PCA obeject pca= decomposition.PCA(n_components=k)

#default value of k =min(n_sample, n_features)
● # For Factor analysis
● #fa= decomposition.FactorAnalysis()
● # Reduced the dimension of training dataset using PCA
● train_reduced = pca.fit_transform(train)
● #Reduced the dimension of test dataset
● test_reduced = pca.transform(test)

Gradient Boosting Algorithms

● GBM is a boosting algorithm used when we deal
with plenty of data to make a prediction with high
prediction power. Boosting is actually an
ensemble of learning algorithms which combines
the prediction of several base estimators in order
to improve robustness over a single estimator. It
combines multiple weak or average predictors to a
build strong predictor. These boosting algorithms
always work well in data science competitions like
Kaggle, AV Hackathon, CrowdAnalytix.

#Import Library

from sklearn.ensemble import GradientBoostingClassifier

#Assumed you have, X (predictor) and Y (target) for training data set and
x_test(predictor) of test_dataset

Create Gradient Boosting Classifier object

model= GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
max_depth=1, random_state=0)

Train the model using the training sets and check score

model.fit(X, y)

#Predict Output

predicted= model.predict(x_test)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

