

Data Analytic

Tools and Techniques in data science

Tassadaq Hussain

Specialization: Supercomputing and Artificial Intelligence Prof. University of Sialkot www.tassadaq.pakistansupercomputing.com

Data Analytics

- ➤ Understanding the Nature of the Data
 - Categorical (nominal and ordinal)
 - Numerical (discrete and continuous)
- \triangleright Data => Information
- Data => Knowledge

- The attractive/most paying job in the next 10 years will be statisticians," Hal Varian, Google Chief Economist
- The U.S. will need 140,000-190,000 predictive analysts and 1.5 million managers/analysts by 2018. McKinsey Global Institute's June 2011
- New Data Science institutes being created or repurposed NYU, Columbia, Washington, UCB,...
- New degree programs, courses, boot-camps:
- e.g., at Berkeley: Stats, I-School, CS, Astronomy...
- One proposal (elsewhere) for an MS in "Big Data Science"
- Plans for Data Science Stream at AUST
- RDA-CODATA School of Research Data Science

What is Data Science?

- An area that manages, manipulates, extracts, and interprets knowledge from tremendous amount of data
- Data science (DS) is a multidisciplinary field of study with goal to address the challenge in big data
- Data science principles apply to all data big and small

Need?

Support for Decision Making
Taking advantage of information
Rapidly changing environments
Global competition
Demanding customers

Characteristics of Data for Good Decision Making

Better Quality Data – Characteristics

Accuracy

Accurate enough for intended purposes:

- Balance with use, cost, effort, timeliness
- · Capture close to point of activity
- Make accuracy compromises clear

Reliability

Collection processes consistent:

- ...over time
- ... for multiple collection points
- · ... between collection systems

Relevance

Data relevant to intended purpose:

- Periodic review of requirements
- Quality assurance and feedback process
- Use carefully for other purposes

Validity

Compliance with requirements:

- · Application of definitions
- · Consistency over time
- · Consistency with others

Timeliness

To Influence Decisions:

- · Capture quickly after the event
- Available quickly enough
- · Available frequently enough

Completeness

Monitor quality to match data needs:

- Missing data
- Invalid data
- Incomplete data

Data Mining

- "Data mining is an interdisciplinary subfield of computer science. It is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems." - Wikipedia
- Examining large databases to produce new information.
 - Uses statistical methods and artificial intelligence to analyze data.
 - Finds hidden features of the data that were not yet known.

BI

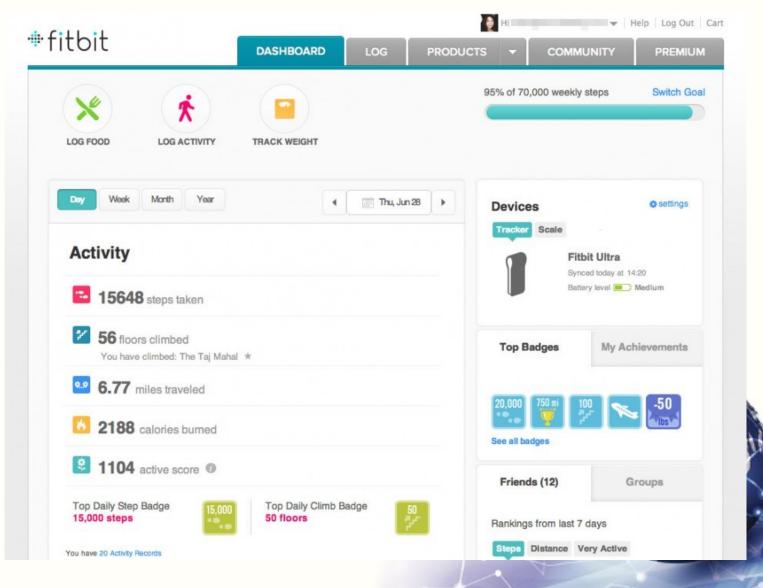
- Tools and techniques to turn data into meaningful information.
 - Process: Methods used by the organization to turn data into knowledge.
 - Product: Information that allows businesses to make decisions.

What is Business Intelligence?

- Collecting and refining information from many sources (internal and external)
- Analyzing and presenting the information in useful ways (dashboards, visualizations)
- So that people can make better decisions
- That help build and retain competitive advantage.

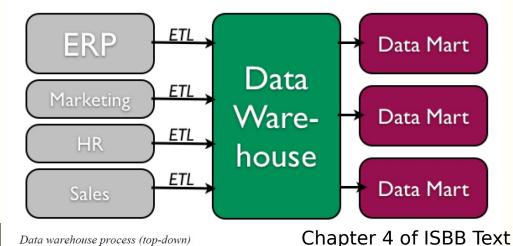
Klipfolio - sample of a marketing dashboard

FitBit - Health Dashboard



Data Warehouse

 Collection of data from multiple sources (internal and external)



Summary, historical operations.

- Data "cleaning" before use.
- Stored independently from operational data.
- Broken down into DataMarts for use.

5 Tasks of Data Mining in Business

- Classification Categorizing data into actionable groups. (ex. loan applicants)
- Estimation Response rates, probabilities of responses.
- Prediction Predicting customer behavior.
- Affinity Grouping What items or services are customers likely to purchase together?
- Description Finding interesting patterns.

Data Mining Techniques

- Market Basket Analysis
- Cluster Analysis
- Decision Trees and Rule Induction
- Neural Networks

Market Basket Analysis

- Finding patterns or sequences in the way that people purchase products and services.
- Walmart Analytics
 - Obvious: People who buy Gin also buy tonic.
 - Non-obvious: Men who bought diapers would also purchase beer.

Cluster Analysis

- Grouping data into like clusters based on specific attributes.
- Examples
 - Crime map clusters to better deploy police.
 - Where to build a cellular tower.
 - Outbreaks of Zika virus.

Practice:

https://towardsdatascience.com/a-step-by-step-introduction-to-cohort-analysis-in-python-a2cbbd8460ea

https://www.analyticsvidhya.com/blog/2021/06/cohort-analysis-using-python-for-beginners-a-hands-on-tutorial/

BI Applications

- Customer Analytics
- Product Analytics
- Human Capital Productivity Analysis
- Business Productivity Analytics
- Sales Channel Analytics
- Supply Chain Analytics
- Behavior Analytics

Reading Data; Selecting and Filtering the Data; Data manipulation, sorting, grouping, rearranging

Plotting the data

Descriptive statistics

Inferential statistics

Python Libraries for Data Science

Many popular Python toolboxes/libraries:

- NumPy
- SciPy
- Pandas
- SciKit-Learn

All these libraries are installed on the SCC

Visualization libraries

- matplotlib
- Seaborn

and many more ...

Python Libraries for Data Science

NumPy:

- introduces objects for multidimensional arrays and matrices, as well as functions that allow to easily perform advanced mathematical and statistical operations on those objects
- provides vectorization of mathematical operations on arrays and matrices which significantly improves the performance

Link:

http://manyuotherupython libraries are built on NumPy

Python Libraries for Data Science

SciPy:

- collection of algorithms for linear algebra, differential equations, numerical integration, optimization, statistics and more
- part of SciPy Stack
- built on NumPy

Link:

https://www.scipy.org/scipylib/

Pandas:

- adds data structures and tools designed to work with table-like data (similar to Series and Data Frames in R)
- provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation etc.
- allows handling missing data

Link: http://pandas.pydata.org/

Python Libraries for Data Science

SciKit-Learn:

provides machine learning algorithms: classification, regression, clustering, model validation etc.

built on NumPy, SciPy and matplotlib

Link: http://scikit-learn.org/

matplotlib:

- python 2D plotting library which produces publication quality figures in a variety of hardcopy formats
- a set of functionalities similar to those of MATLAB
- line plots, scatter plots, barcharts, histograms, pie charts etc.

Link: https://matplotlib.org/

 relatively low-level; some effort needed to create advanced visualization

Python Libraries for Data Science

Seaborn:

- based on matplotlib
- provides high level interface for drawing attractive statistical graphics
- Similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/

Login to the Shared Computing Cluster

Use your SCC login information if you have SCC account

 If you are using tutorial accounts see info on the blackboard

Note: Your password will not be displayed while you enter it.

Loading Python Libraries

```
In #Import Python Libraries

[]: import numpy as np
import scipy as sp
import pandas as pd
import matplotlib as mpl
import seaborn as sns
```

Press Shift+Enter to execute the *jupyter* cell

Reading data using pandas

```
#Read csv file
df =
[pd]:read_csv("http://rcs.bu.edu/examples/python/data_analysis/
Salaries.csv")
```

Note: The above command has many optional arguments to fine-tune the data import process.

There is a number of pandas commands to read other data formats:

```
pd.read_excel('myfile.xlsx', sheet_name='Sheet1',
index_col=None, na_values=['NA'])
pd.read_stata('myfile.dta')
pd.read_sas('myfile.sas7bdat')
pd.read_hdf('myfile.h5','df')
```

Exploring data frames

```
#List first 5 records
df.head()
```

Out[:		rank	discipline	phd	service	sex	salary
	0	Prof	В	56	49	Male	186960
	1	Prof	Α	12	6	Male	93000
	2	Prof	Α	23	20	Male	110515
	3	Prof	А	40	31	Male	131205
	4	Prof	В	20	18	Male	104800

Hands-on exercises

- ✓ Try to read the first 10, 20, 50 records;
- ✓ Can you guess how to view the last few

records; Hint:

Data Frame data types

Pandas Type	Native Python Type	Description
object	string	The most general dtype. Will be assigned to your column if column has mixed types (numbers and strings).
int64	int	Numeric characters. 64 refers to the memory allocated to hold this character.
float64	float	Numeric characters with decimals. If a column contains numbers and NaNs(see below), pandas will default to float64, in case your missing value has a decimal.
datetime64, timedelta[ns]	N/A (but see the datetime module in Python's standard library)	Values meant to hold time data. Look into these for time series experiments.

Data Frame data types

```
In [4]:
   #Check a particular column type
   df['salary'].dtype
Out[4]: dtype('int64')
In [5]:
   #Check types for all the columns
   df.dtypes
Out[4]:
   rank object
   discipline object
       int64
   phd
   service int64
   sex object
   salary int64
   dtype: object
```

Data Frames attributes

Python objects have attributes and methods.

df.attrib ute	description
dtypes	list the types of the columns
columns	list the column names
axes	list the row labels and column names
ndim	number of dimensions
size	number of elements
shape	return a tuple representing the dimensionality
values	numpy representation of the data

Hands-on exercises

- ✓ Find how many records this data frame has;
- ✓ How many elements are there?
- √ What are the column names?
- ✓ What types of columns we have in this data

frame?

Data Frames methods

Unlike attributes, python methods have *parenthesis*. All attributes and methods can be listed with a *dir()* function: **dir(df)**

df.method ()	description
head([n]), tail([n])	first/last n rows
describe()	generate descriptive statistics (for numeric columns only)
max(), min()	return max/min values for all numeric columns
mean(), median()	return mean/median values for all numeric columns
std()	standard deviation
sample([n])	returns a random sample of the data frame
dropna()	drop all the records with missing values

Hands-on exercises

- ✓ Give the summary for the numeric columns in the dataset
- ✓ Calculate standard deviation for all numeric columns;
- ✓ What are the mean values of the first 50 records in the dataset? Hint: use head() method to subset the first 50 records and then calculate the mean

Selecting a column in a Data Frame

Method 1: Subset the data frame using column name:

df['sex']

Method 2: Use the column name as an attribute:

df.sex

Note: there is an attribute rank for pandas data frames, so to select a column with a name "rank" we should use method 1.

38

Hands-on exercises

- ✓ Calculate the basic statistics for the *salary* column;
- ✓ Find how many values in the *salary* column (use *count* method);
- ✓ Calculate the average salary;

Data Frames *groupby* method

Using "group by" method we can:

- Split the data into groups based on some criteria
- Calculate statistics (or apply a function) to each group
- Similar to dplyr() function in R

```
In [#Group data using rank
    df_rank = df.groupby(['rank'])

In [#Qalculate mean value for each numeric column per each
    group
    df_rank.mean()
        phd service salary

rank

AssocProf 15.076923 11.307692 91786.230769

AsstProf 5.052632 2.210526 81362.789474

Prof 27.065217 21.413043 123624.804348
40
```

Data Frames *groupby* method

Once groupby object is create we can calculate various statistics for each group:

```
In [#Qalculate mean salary for each professor rank:
    df.groupby('rank')[['salary']].mean()
```

	salai y
rank	
AssocProf	91786.230769
AsstProf	81362.789474
Prof	123624.804348

salarv

Note: If single brackets are used to specify the column (e.g. salary), then the output is Pandas Series object. When double brackets are used the output is a Data Frame

Data Frames *groupby* method

groupby performance notes:

- no grouping/splitting occurs until it's needed. Creating the *groupby* object only verifies that you have passed a valid mapping
- by default the group keys are sorted during the *groupby* operation. You may want to pass sort=False for potential speedup:

```
In #Qalculate mean salary for each professor rank:
    df.groupby(['rank'], sort=False)[['salary']].mean()
```

Data Frame: filtering

df_f = df[df['sex'] == 'Female']

To subset the data we can apply Boolean indexing. This indexing is commonly known as a filter. For example if we want to subset the rows in which the salary value is greater than \$120K:

Data Frames: Slicing

There are a number of ways to subset the Data Frame:

- one or more columns
- one or more rows
- a subset of rows and columns

Rows and columns can be selected by their position or label

Data Frames: Slicing

When selecting one column, it is possible to use single set of brackets, but the resulting object will be a Series (not a DataFrame):

```
In [ ]: #Select column salary:
    df['salary']
```

When we need to select more than one column and/or make the output to be a DataFrame, we should use double brackets:

```
In [ ]: #Select column salary:
    df[['rank', 'salary']]
```

Data Frames: Selecting rows

If we need to select a range of rows, we can specify the range using ":"

```
In [ ]: #Select rows by their position:
    df[10:20]
```

Notice that the first row has a position 0, and the last value in the range is omitted: So for 0:10 range the first 10 rows are returned with the positions starting with 0 and ending with 9

Data Frames: method loc

If we need to select a range of rows, using their labels we can use method loc:

```
In [#Select rows by their labels:
    df_sub.loc[10:20,['rank','sex','salary']]
```

		rank	sex	salary
Out[10	Prof	Male	128250
	11	Prof	Male	134778
	13	Prof	Male	162200
	14	Prof	Male	153750
	15	Prof	Male	150480
	19	Prof	Male	150500

Data Frames: method iloc

If we need to select a range of rows and/or columns, using their positions we can use method iloc:

18 Female 129000

36 Female 137000

19 Female 151768

25 Female 140096

39 Prof

40 Prof

Prof

```
In #Select rows by their labels:
      df_sub.iloc[10:20,[0, 3, 4, 5]]
        rank service
                  sex salary
             19 Male 148750
     26 Prof
Out <sub>27 Prof</sub>
              43 Male 155865
              20 Male 123683
     29 Prof
     31 Prof
              21 Male 155750
              23 Male 126933
     35 Prof
        Prof
                  Male 146856
```

Data Frames: method iloc (summary)

```
df.iloc[0] # First row of a data frame
df.iloc[i] #(i+1)th row
df.iloc[-1] # Last row
```

```
df.iloc[:, 0] # First column
df.iloc[:, -1] # Last column
```

```
df.iloc[0:7]  #First 7 rows df.iloc[:, 0:2]  #First 2 columns df.iloc[1:3, 0:2]  #Second through third rows and first 2 columns df.iloc[[0,5], [1,3]]  #1^{\rm st} and 6^{\rm th} rows and 2^{\rm nd} and 4^{\rm th} columns
```

Data Frames: Sorting

We can sort the data by a value in the column. By default the sorting will occur in ascending order and a new data frame is return.

Out[]:

rank	discipline	phd	service	sex	salary
AsstProf	А	2	0	Female	72500
AsstProf	Α	2	0	Male	85000
AsstProf	В	5	0	Female	77000
AsstProf	В	4	0	Male	92000
AsstProf	В	1	0	Male	88000
	AsstProf AsstProf AsstProf	AsstProf A AsstProf B AsstProf B	AsstProf A 2 AsstProf B 5 AsstProf B 4	AsstProf A 2 0 AsstProf A 2 0 AsstProf B 5 0 AsstProf B 4 0	AsstProf A 2 0 Female AsstProf A 2 0 Male AsstProf B 5 0 Female AsstProf B 4 0 Male

Data Frames: Sorting

We can sort the data using 2 or more columns:

```
df_sorted = df.sort_values( by =['service', 'salary'], ascending
= [True, False])
df_sorted.head(10)
```

0 1		rank	discipline	phd	service	sex	salary
Out	52	Prof	А	12	0	Female	105000
	17	AsstProf	В	4	0	Male	92000
	12	AsstProf	В	1	0	Male	88000
	23	AsstProf	А	2	0	Male	85000
	43	AsstProf	В	5	0	Female	77000
	55	AsstProf	Α	2	0	Female	72500
	57	AsstProf	Α	3	1	Female	72500
	28	AsstProf	В	7	2	Male	91300
	42	AsstProf	В	4	2	Female	80225
	68	AsstProf	Α	4	2	Female	77500

Missing Values

Missing values are marked as NaN

```
# Read a dataset with missing values
flights =
pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/fli
ghts.csv")
```

Select the rows that have at least one missing value flights[flights.isnull().any(axis=1)].head()

Out		year	month	day	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	flight	origin	dest	air_time	distance	hour	minute
	330	2013	1	1	1807.0	29.0	2251.0	NaN	UA	N31412	1228	EWR	SAN	NaN	2425	18.0	7.0
	403	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EHAA	791	LGA	DFW	NaN	1389	NaN	NaN
	404	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EVAA	1925	LGA	MIA	NaN	1096	NaN	NaN
	855	2013	1	2	2145.0	16.0	NaN	NaN	UA	N12221	1299	EWR	RSW	NaN	1068	21.0	45.0
	858	2013	1	2	NaN	NaN	NaN	NaN	AA	NaN	133	JFK	LAX	NaN	2475	NaN	NaN

Missing Values

There are a number of methods to deal with missing values in the data frame:

df.method()	description
dropna()	Drop missing observations
dropna(how='all')	Drop observations where all cells is NA
dropna(axis=1, how='all')	Drop column if all the values are missing
dropna(thresh = 5)	Drop rows that contain less than 5 non-missing values
fillna(0)	Replace missing values with zeros
isnull()	returns True if the value is missing
notnull()	Returns True for non-missing values

Missing Values

- When summing the data, missing values will be treated as zero
- If all values are missing, the sum will be equal to NaN
- cumsum() and cumprod() methods ignore missing values but preserve them in the resulting arrays
- Missing values in GroupBy method are excluded (just like in R)
- Many descriptive statistics methods have skipna option to control if missing data should be excluded
 This value is set to True by default (unlike R)

Aggregation Functions in Pandas

Aggregation - computing a summary statistic about each group, i.e.

- compute group sums or means
- compute group sizes/counts

Common aggregation functions:

min, max count, sum, prod mean, median, mode, mad std, var

Aggregation Functions in Pandas

agg() method are useful when multiple statistics are computed per column:

```
flights[['dep_delay','arr_delay']].agg(['min','mean','max'])
```

Out[dep_delay	arr_delay
	min	-16.000000	-62.000000
	mean	9.384302	2.298675
	max	351.000000	389.000000

Basic Descriptive Statistics

df.method()	description
describe	Basic statistics (count, mean, std, min, quantiles, max)
min, max	Minimum and maximum values
mean, median, mode	Arithmetic average, median and mode
var, std	Variance and standard deviation
sem	Standard error of mean
skew	Sample skewness
kurt	kurtosis

Graphics to explore the data

Seaborn package is built on matplotlib but provides high level interface for drawing attractive statistical graphics, similar to ggplot2 library in R. It specifically targets statistical data visualization

To show graphs within Python notebook include inline directive:

%matplotlib inline

Graphics

	description
distplot	histogram
barplot	estimate of central tendency for a numeric variable
violinplot	similar to boxplot, also shows the probability density of the data
jointplot	Scatterplot
regplot	Regression plot
pairplot	Pairplot
boxplot	boxplot
swarmplot	categorical scatterplot
factorplot	General categorical plot

Basic statistical Analysis

statsmodel and scikit-learn - both have a number of function for statistical analysis

The first one is mostly used for regular analysis using R style formulas, while scikit-learn is more tailored for Machine Learning.

statsmodels:

- linear regressions
- ANOVA tests
- hypothesis testings
- many more ...

scikit-learn:

- kmeans
- support vector machines
- random forests
- many more ...