
Introduction to ComputerVision

Tassadaq Hussain
Associate Prof: Riphah Int’l University

Microsoft Barcelona Supercomputing Center
Universitat Politécnica de Catalunya

Barcelona, Spain

OpenCV

IntelIntel®® OPEN SOURCE COMPUTER VISION OPEN SOURCE COMPUTER VISION
LIBRARYLIBRARY

GoalsGoals

Develop a universal toolbox for
research and development in the
field of Computer Vision

We will talk about:
Algorithmic content
Technical content
Examples of usage
Trainings

OpenCV algorithms

OpenCV FunctionalityOpenCV Functionality
(more than 350 algorithms)(more than 350 algorithms)

 Basic structures and operations
 Image Analysis
 Structural Analysis
 Object Recognition
 Motion Analysis and Object Tracking
 3D Reconstruction

Basic Structures and OperationsBasic Structures and Operations

 Image and Video Data Structures
Mat image;

Image = imread (“path”);

 Multidimensional array operations
include operations on images, matrices and histograms.

equalizeHist(src, dst);

 Dynamic structures operations
concern all vector data storages.

 Drawing primitives
allows not only to draw primitives but to use the algorithms for pixel access

 Utility functions
 in particular, contain fast implementations of useful math functions.

Image Read/Write
 Import cv2 as cv

gray_img = cv2.imread('images/input.jpg', cv2.IMREAD_GRAYSCALE)

cv2.imshow('Grayscale', gray_img)

cv2.waitKey()

cv2.imwrite('images/output.jpg', gray_img)

gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

yuv_img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)

Image Analysis
 Thresholds

threshold(src_gray, dst, threshold_value, max_BINARY_value, threshold_type);

 Statistics
 Pyramids
 Morphology
 Erosion , dilation etc

 Distance transform
 Feature detection

StatisticsStatistics

 min, max, mean value, standard deviation over
the image

 Norms C, L1, L2
 Multidimensional histograms
 Spatial moments up to order 3 (central,

normalized, Hu)

PyramidsPyramids

An image pyramid is a collection of images - all
arising from a single original image - that are
successively downsampled until some desired
stopping point is reached.

PyrUp()

pyrdown()

Gaussian pyramid:

Laplacian pyramid:

Image PyramidsImage Pyramids

 Gaussian and Laplacian

Pyramid-based color Pyramid-based color
segmentationsegmentation

On still picturesOn still pictures And on moviesAnd on movies

Multidimensional HistogramsMultidimensional Histograms

 Histogram operations : calculation,
normalization, comparison, back project

 Histograms types:
 Dense histograms
 Signatures (balanced tree)

Morphological OperationsMorphological Operations

 Two basic morphology operations using
structuring element:
 erosion
 dilation

 More complex morphology operations:
 opening
 closing
 morphological gradient
 top hat
 black hat

Morphological Operations ExamplesMorphological Operations Examples
 Morphology - applying Min-Max. Filters and its combinations

Opening IoB= (IB)BDilatation IBErosion IBImage I

Closing I•B= (IB)B TopHat(I)= I - (IB) BlackHat(I)= (IB) - IGrad(I)= (IB)-(IB)

Distance TransformDistance Transform

The distance transform operator generally takes binary images as inputs. In this
operation, the gray level intensities of the points inside the foreground regions are
changed to distance their respective distances from the closest 0 value (boundary).
distanceTransform()
 Calculate the distance for all non-feature points to the closest feature point
 Two-pass algorithm, 3x3 and 5x5 masks, various metrics predefined

Flood FillingFlood Filling

 Simple
 Gradient

cv2.floodFill(img, mask, (0,0), 255);

Feature DetectionFeature Detection

 Fixed filters (Sobel operator, Laplacian);
 Optimal filter kernels with floating point

coefficients (first, second derivatives, Laplacian)
 Special feature detection (corners)
 Canny operator
 Hough transform (find lines and line segments)
 Gradient runs

Convolution Convolution
Convolution is a fundamental operation in image processing. It
basically applies a mathematical operator to each pixel, and change
its value in some way.

To apply this mathematical operator, convolution uses another matrix
called a kernel. The kernel is usually much smaller in size than the
input image. For each pixel in the image, we take the kernel and place
it on top so that the center of the kernel coincides with the pixel under
consideration.

We then multiply each value in the kernel matrix with the
corresponding values in the image, and then sum it up. This is the
new value that will be applied to this position in the output image.

import cv2

import numpy as np

img = cv2.imread('images/input.jpg')

rows, cols = img.shape[:2]

kernel_identity = np.array([[0,0,0], [0,1,0], [0,0,0]])

kernel_3x3 = np.ones((3,3), np.float32) / 9.0 # Divide by 9 to normalize the kernel

kernel_5x5 = np.ones((5,5), np.float32) / 25.0 # Divide by 25 to normalize the kernel

cv2.imshow('Original', img)

value -1 is to maintain source image depth

output = cv2.filter2D(img, -1, kernel_identity)

cv2.imshow('Identity filter', output)

output = cv2.filter2D(img, -1, kernel_3x3)

cv2.imshow('3x3 filter', output)

output = cv2.filter2D(img, -1, kernel_5x5)

cv2.imshow('5x5 filter', output)

cv2.waitKey(0)

import cv2

from matplotlib import pyplot as plt

import numpy as np

img = cv2.imread('images/input.jpg')

cv2.imshow('Original', img)

size = 15

generating the kernel

kernel_motion_blur = np.zeros((size, size))

kernel_motion_blur[int((size-1)/2), :] = np.ones(size)

kernel_motion_blur = kernel_motion_blur / size

applying the kernel to the input image

output = cv2.filter2D(img, -1, kernel_motion_blur)

cv2.imshow('Motion Blur', output)

cv2.waitKey(0)

Sharpening Images
generating the kernels

kernel_sharpen_1 = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])

kernel_sharpen_2 = np.array([[1,1,1], [1,-7,1], [1,1,1]])

kernel_sharpen_3 = np.array([[-1,-1,-1,-1,-1], [-1,2,2,2,-1], [-1,2,8,2,-1], [-1,2,2,2,-1], [-1,-1,-1,-1,-1]]) / 8.0

The process of edge detection involves detecting sharp edges in
the image, and producing a binary image as the output.
Typically, we draw white lines on a black background to
indicate those edges.

We can think of edge detection as a high pass filtering
operation. A high pass filter allows high-frequency content to
pass through and blocks the low-frequency content. As we
discussed earlier, edges are high-frequency content. In edge
detection, we want to retain these edges and discard
everything else. Hence, we should build a kernel that is the
equivalent of a high pass filter.

Canny Edge DetectorCanny Edge Detector

import cv2
import numpy as np
img = cv2.imread('images/input_shapes.png',
cv2.IMREAD_GRAYSCALE)
rows, cols = img.shape # It is used depth of
cv2.CV_64F.
sobel_horizontal = cv2.Sobel(img, cv2.CV_64F, 1, 0,
ksize=5)
Kernel size can be: 1,3,5 or 7.
sobel_vertical = cv2.Sobel(img, cv2.CV_64F, 0, 1,
ksize=5)
cv2.imshow('Original', img)
cv2.imshow('Sobel horizontal', sobel_horizontal)
cv2.imshow('Sobel vertical', sobel_vertical)
cv2.waitKey(0)

Hough TransformHough Transform
Detects lines in a binary image

•Probabilistic Probabilistic
Hough TransformHough Transform•Standard Hough Standard Hough

TransformTransform

Hough TransformHough Transform
Detects lines in a binary image

Hough Transform is a popular technique to detect any Hough Transform is a popular technique to detect any
shape, if you can represent that shape in mathematical shape, if you can represent that shape in mathematical

form. It can detect the shape even if it is broken or form. It can detect the shape even if it is broken or
distorted a little bit. We will see how it works for a line.distorted a little bit. We will see how it works for a line.

Contour RetrievingContour Retrieving

 The contour representation:
 Chain code (Freeman code)
 Polygonal representation

Initial Point

Chain code for the curve:
34445670007654443

Contour representation

Hierarchical representation of
contours

Image Boundary

(W1) (W2) (W3)

(B2) (B3) (B4)

(W5) (W6)

Contours ExamplesContours Examples

Source Picture
(300x600 = 180000 pts total)

Retrieved Contours
(<1800 pts total)

After Approximation
(<180 pts total)

And it is rather fast: ~70 FPS for 640x480 on complex scenes

OpenCV FunctionalityOpenCV Functionality

 Basic structures and operations
 Image Analysis
• Structural Analysis
 Object Recognition
 Motion Analysis and Object Tracking
 3D Reconstruction

Object RecognitionObject Recognition

 Eigen objects
 Hidden Markov Models

We will talk about:
Algorithmic content
Technical content
Examples of usage
Trainings

OpenCV Modules/Libraries

Technical contentTechnical content
 Software requirements
 OpenCV structure
 Data types
 Error Handling
 I/O libraries (HighGUI, CvCAM)
 Scripting

 Hawk
 Using OpenCV in MATLAB

 OpenCV lab (code samples)

Software RequirementsSoftware Requirements
 Win32 platforms:

 Win9x/WinNT/Win2000
 C++ Compiler (makefiles for Visual C++ 6.0,Intel C++ Compiler

5.x,Borland C++ 5.5, Mingw GNU C/C++ 2.95.3 are included) for
core libraries

 Visual C++ to build the most of demos
 DirectX 8.x SDK for directshow filters
 ActiveTCL 8.3.3 for TCL demos
 IPL 2.2+ for the core library tests

 Linux/*NIX:
 C++ Compiler (tested with GNU C/C++ 2.95.x, 2.96, 3.0.x)
 TCL 8.3.3 + BWidgets for TCL demos
 Video4Linux + Camera drivers for most of demos
 IPL 2.2+ for the core library tests

OpenCV structureOpenCV structure

Switcher

OpenCV(C++ classes, High-level C functions)

Open source

Open source

Open source
Open source

Open source

IPPIPP
 (Optimized low level functions)(Optimized low level functions)

DShow filters, Demo apps,
Scripting Environment

Open source

Low level C-functions

OpenCV

Intel Image
Processing
Library

Data TypesData Types

 Image (IplImage);
 Matrix (CvMat);
 Histogram (CvHistogram);

 Dynamic structures (CvSeq, CvSet, CvGraph);
 Spatial moments (CvMoments);
 Helper data types (CvPoint, CvSize, CvTermCriteria,

IplConvKernel and others).

Multi-
dimensional
array

Error HandlingError Handling

 There are no return error codes
 There is a global error status that can be

set or checked via special functions
 By default a message box appears if error

happens

Portable GUI library (HighGUI)Portable GUI library (HighGUI)
 Reading/Writing images in several formats

(BMP,JPEG,TIFF,PxM,Sun Raster)
 Creating windows and displaying images in it.

HighGUI windows remember their content (no
need to implement repainting callbacks)

 Simple interaction facilities: trackbars, getting
input from keyboard
and mouse (new in Win32 version).

Portable Video Capture Library Portable Video Capture Library
(CvCAM)(CvCAM)

 Single interface for video capture and
playback under Linux and Win32

 Provides callback for subsequent
processing of frames from camera or AVI-
file

 Easy stereo from 2 USB cameras or
stereo-camera

ViPS: Visual Processing SystemViPS: Visual Processing System

 ARM Multi-core System Architecture
 Visual Environment
 Gnu C/C++ Compiler
 Plugin support
 Interface to OpenCV,IPL and HighGUI via plugins
 Video support

Trainings

Start Lab

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

