@ Microsoft Research
l Centre ;

Computer Vision
Transformation

Tassadaq Hussain

Associate Prof: Riphah Int’l University
Microsoft Barcelona Supercomputing Center Barcelona, Spain

UCERD Pvt Ltd Islamabad
\ UCERD
Gathering
\ Intellectuals

Image color spaces

RGB: Probably the most popular color space. It stands for Red, Green, and Blue. In this
color space, each color is represented as a weighted combination of red, green, and blue.
So every pixel value is represented as a tuple of three numbers corresponding to red,
green, and blue. Each value ranges between 0 and 255.

YUV: Even though RGB is good for many purposes, it tends to be very limited for many
real-life applications. People started thinking about different methods to separate the
intensity information from the color information. Hence, they came up with the YUV color
space. Y refers to the luminance or intensity, and U/V channels represent color
information. This works well in many applications because the human visual system
perceives intensity information very differently from color information.

HSV: As it turned out, even YUV was still not good enough for some applications. So
people started thinking about how humans perceive color, and they came up with the HSV
color space. HSV stands for Hue, Saturation, and Value. This is a cylindrical system where
we separate three of the most primary properties of colors and represent them using
different channels. This is closely related to how the human visual system understands
color. This gives us a lot of flexibility as to how we can handle images.

(I}gtgrERD @ Microsoft Research
\ Intellectuals Centre

www.ucerd

rr s W

Converting Color Space

import cv2

img = cv2.imread('./images/input.jpg’, cv2.IMREAD_COLOR)
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
cv2.imshow('Grayscale image', gray_img)

cv2.waitKey()

You can convert to YUV by using the following flag:
yuv_img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)

y,u,v = cv2.split(yuv_img)
cv2.imshow('Y channel', y)
cv2.imshow('U channel', u)
cv2.imshow('V channel’, v)
cv2.waitKey()

UCERD .
Gathering Microsoft Research
\ Intellectuals Centre

www.ucerd

Image rotation

import cv2

import numpy as np

img = cv2.imread('images/input.jpg’)

num_rows, num_cols = img.shapel[:2]

rotation_matrix = cv2.getRotationMatrix2D((num_cols/2, num_rows/2), 30, 0.7)
img_rotation = cv2.warpAffine(img, rotation_matrix, (num_cols, num_rows))
cv2.imshow('Rotation’, img_rotation)

cv2.waitKey()

UCERD .
Gathering Microsoft Research
\ Intellectuals Centre

www.ucerd

Image scaling

import cv2

img = cv2.imread('images/input.jpg")

img_scaled = cv2.resize(img,None,fx=1.2, fy=1.2, interpolation = cv2.INTER_LINEAR)
cv2.imshow('Scaling - Linear Interpolation’, img_scaled)

img_scaled = cv2.resize(img,None, fx=1.2, fy=1.2, interpolation = cv2.INTER_CUBIC)
cv2.imshow('Scaling - Cubic Interpolation', img_scaled)

img_scaled = cv2.resize(img,(450, 400), interpolation = cv2.INTER_AREA)
cv2.imshow('Scaling - Skewed Size', img_scaled)

cv2.waitKey()

UCERD .
Gathering Microsoft Research
\ Intellectuals Centre

www.ucerd.com

-r#

——

Transformations

Euclidean transformations are a type of geometric
transformation that preserve length and angle measures.

If we take a geometric shape and apply Euclidean
transformation to it, the shape will remain unchanged. It
might look rotated, shifted, and so on, but the basic
structure will not change. So technically, lines will remain
lines, planes will remain planes, squares will remain
squares, and circles will remain circles.

In Affine transformations, lines will remain lines, but squares
might become rectangles or parallelograms. Basically,
affine transformations don't preserve lengths and angles.

‘:% yatgrERD @Microsoft Research
\ \ Intellectuals Centre

Scale-invariant feature

transform (SIFT)

SIFT builds a pyramid by downsampling an image and taking the difference
of Gaussian.

import cv2

import numpy as np

input_image = cv2.imread('images/fishing_house.jpg')

gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)
For version opencv < 3.0.0, use cv2.SIFT()

sift = cv2.xfeatures2d.SIFT create()

keypoints = sift.detect(gray _image, None)
cv2.drawKeypoints(input_image, keypoints, input_image, \

flags = cv2.DRAW_MATCHES FLAGS DRAW_RICH_KEYPOINTS)
cv2.imshow('SIFT features', input_image)

cv2.waitKey()

UCERD ;
Gathering Microsoft Research
Intellectuals Centre

www.ucerd.com

e —
Y

”-._-_ - - ' : - F
Microsoft Research

UCERD
Gathering
O \ Intellectuals Centre

’!‘g b.# ?% :.. . =

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

