
Computer Vision
Features Extraction

Tassadaq Hussain

Associate Prof: Riphah Int’l University
Microsoft Barcelona Supercomputing Center Barcelona, Spain

UCERD Pvt Ltd Islamabad

Key Points
Image content analysis refers to the process of
understanding the content of an image so that we can take
some action based on that. Let's take a step back and talk
about how humans do it. Our brain is an extremely powerful
machine that can do complicated things very quickly. When
we look at something, our brain automatically creates a
footprint based on the interesting aspects of that image.

What are keypoints?

Detecting the corners

 In computer vision, there is a popular corner detection
technique called the Harris Corner Detector.

We basically construct a 2x2 matrix based on partial
derivatives of the grayscale image, and then analyze
the eigenvalues obtained. Eigenvalues are a special
set of scalars associated with a linear system of
equations that provide segmented information about
the image by a cluster of pixels that belong together.
In this case, we use them to detect the corners. This
is actually an oversimplification of the actual
algorithm, but it covers the gist.

import cv2

import numpy as np

img = cv2.imread('./images/box.png')

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

gray = np.float32(gray)

To detect only sharp corners

dst = cv2.cornerHarris(gray, blockSize=4, ksize=5, k=0.04)

Result is dilated for marking the corners

dst = cv2.dilate(dst, None)

Threshold for an optimal value, it may vary depending on the image

img[dst > 0.01*dst.max()] = [0,0,0]

cv2.imshow('Harris Corners(only sharp)',img)

to detect soft corners

dst = cv2.cornerHarris(gray, blockSize=14, ksize=5, k=0.04)

dst = cv2.dilate(dst, None)

img[dst > 0.01*dst.max()] = [0,0,0]

cv2.imshow('Harris Corners(also soft)',img)

cv2.waitKey()

Good features to track
import cv2
import numpy as np
img = cv2.imread('images/box.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
corners = cv2.goodFeaturesToTrack(gray, maxCorners=7, qualityLevel=0.05,
minDistance=25)
corners = np.float32(corners)
for item in corners:
x, y = item[0]
cv2.circle(img, (x,y), 5, 255, -1)
cv2.imshow("Top 'k' features", img)
cv2.waitKey()

Scale-invariant feature
transform (SIFT)

SIFT builds a pyramid by downsampling an image and taking the difference
of Gaussian.

import cv2

import numpy as np

input_image = cv2.imread('images/fishing_house.jpg')

gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)

For version opencv < 3.0.0, use cv2.SIFT()

sift = cv2.xfeatures2d.SIFT_create()

keypoints = sift.detect(gray_image, None)

cv2.drawKeypoints(input_image, keypoints, input_image, \

flags = cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow('SIFT features', input_image)

cv2.waitKey()

Speeded-up robust features
(SURF)

SURF uses a simple box filter to
approximate the Gaussian. The good
thing is that this is really easy to compute
and it's reasonably fast.

import cv2

import numpy as np

input_image = cv2.imread('images/fishing_house.jpg')

gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)

For version opencv < 3.0.0, use cv2.SURF()

surf = cv2.xfeatures2d.SURF_create()

This threshold controls the number of keypoints

surf.setHessianThreshold(15000)

keypoints, descriptors = surf.detectAndCompute(gray_image, None)

cv2.drawKeypoints(input_image, keypoints, input_image, color=(0,255,0),\

flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow('SURF features', input_image)

cv2.waitKey()

Features from Accelerated
Segment Test (FAST)

Even though SURF is faster than SIFT, it's just not fast enough for a
real-time system, especially when there are resource constraints.
When you are building a real-time application on a mobile device,
you won't have the luxury of using SURF to do computations in real
time.

We need something that's really fast and computationally inexpensive.
Hence, Rosten and Drummond came up with FAST. As the name
indicates, it's really fast!

import cv2

import numpy as np

input_image = cv2.imread('images/tool.png')

gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)

Version under opencv 3.0.0 cv2.FastFeatureDetector()

fast = cv2.FastFeatureDetector_create()

Detect keypoints

keypoints = fast.detect(gray_image, None)

print("Number of keypoints with non max suppression:", len(keypoints))

Draw keypoints on top of the input image

img_keypoints_with_nonmax=input_image.copy()

cv2.drawKeypoints(input_image, keypoints, img_keypoints_with_nonmax,

color=(0,255,0), \ flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow('FAST keypoints - with non max suppression',

img_keypoints_with_nonmax)

Disable nonmaxSuppression

fast.setNonmaxSuppression(False)

Detect keypoints again

keypoints = fast.detect(gray_image, None)

print("Total Keypoints without nonmaxSuppression:", len(keypoints))

Draw keypoints on top of the input image

img_keypoints_without_nonmax=input_image.copy()

cv2.drawKeypoints(input_image, keypoints, img_keypoints_without_nonmax,

color=(0,255,0), \ flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow('FAST keypoints - without non max suppression',

img_keypoints_without_nonmax)

cv2.waitKey()

Binary Robust Independent
Elementary Features (BRIEF)

Even though we have FAST to quickly detect the
keypoints, we still have to use SIFT or SURF to
compute the descriptors. We need a way to
quickly compute the descriptors as well. This is
where BRIEF comes into the picture. BRIEF is
a method for extracting feature descriptors. It
cannot detect the keypoints by itself, so we
need to use it in conjunction with a keypoint
detector. The good thing about BRIEF is that it's
compact and fast.

import cv2

import numpy as np

input_image = cv2.imread('images/house.jpg')

gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)

Initiate FAST detector

fast = cv2.FastFeatureDetector_create()

Initiate BRIEF extractor, before opencv 3.0.0 use

cv2.DescriptorExtractor_create("BRIEF")

brief = cv2.xfeatures2d.BriefDescriptorExtractor_create()

find the keypoints with STAR

keypoints = fast.detect(gray_image, None)

compute the descriptors with BRIEF

keypoints, descriptors = brief.compute(gray_image, keypoints)

cv2.drawKeypoints(input_image, keypoints, input_image, color=(0,255,0))

cv2.imshow('BRIEF keypoints', input_image)

cv2.waitKey()

Oriented FAST and Rotated
BRIEF (ORB)

So, now we have arrived at the best
combination out of all the combinations
that we have discussed so far. This
algorithm came out of the OpenCV Labs.
It's fast, robust, and open source! The
SIFT and SURF algorithms are both
patented and you can't use them for
commercial purposes; this is why ORB is
good in many ways.

import cv2

import numpy as np

input_image = cv2.imread('images/fishing_house.jpg')

gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)

Initiate ORB object, before opencv 3.0.0 use cv2.ORB()

orb = cv2.ORB_create()

find the keypoints with ORB

keypoints = orb.detect(gray_image, None)

compute the descriptors with ORB

keypoints, descriptors = orb.compute(gray_image, keypoints)

draw only the location of the keypoints without size or orientation

cv2.drawKeypoints(input_image, keypoints, input_image, color=(0,255,0))

cv2.imshow('ORB keypoints', input_image)

cv2.waitKey()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

