
Introduction to High
Performance Computing

Dr. Tassadaq Hussain

 Personal Introduction
 Problem Formulation

 Importance of Information
 Importance of Digital Electronics
 Problems and Solution

 HPC For Real World Problems
 Hardware Architecture
 Programming Models
 Design Approach

 Projects

Education

 International PhD BarcelonaTech Barcelona 2014

• Computer Architecture

• High Performance System Design

 Masters ISEP Paris 2009

• Electronics and Communication

• Electronics for System

 B.Sc. (Electrical Engineering), RIU Islamabad 2005

Experience
Riphah International University as Assistant Professor
• January 2015 to till date

Microsoft Barcelona supercomputing center
August 2009 – December 2014 www.bscmsrc.es

• Worked closely with High Level Synthesis designers at Ylichron technologies (PLDA
Italia) to develop Three-dimensional memory organization for stencil computation
www.ylichron.it

• Designed Programmable Memory Controller for Vector System on Chip Microsoft
Research Cambridge research.microsoft.com

 Infineon Technology digital design department
July 2008 to 31st March 2009 www.infineon.com

Pakistan Broadcasting Corporation as Senior Broadcasting Engineer
August 2005 to September 2007 www.radio.gov.pk

 Center for Advanced Research in Engineering
August 2004 to August 2005 www.carepvtltd.com

http://www.bscmsrc.es/
http://www.ylichron.it/
http://www.radio.gov.pk/
http://www.carepvtltd.com/

Projects

 Design Ultra Low Cost Display Camera Interface for Mobile
Baseband X Gold Chip at Infineon Technologies France.

 Implementation of Reverse Time Migration on FGPAs at PLDA
Italia and REPSOL BSC Research Center.

 Programmable Memory Controller for Vector System on Chip
Microsoft Research Cambridge.

 Programmable Vector Memory Controller for European ParaDIME
research group at BSC.

 Low Power Low Cost Supercomputer Architecture for
Undeveloped Countries at RIU Pakistan and BSC Spain.

 ViPS: Visual Processing Toolkit at UCERD Pakistan and BSC
Spain.

6

Research

 Published 18 International Paper Publications
 12 Journals 4 Accepted 8 Waiting for Reviews
 Completed 4 International and 2 National

Projects
 Working on 2 Patient

 Personal Introduction
 Problem Formulation

 Importance of Information
 Importance of Digital Electronics
 Problems and Solution

 HPC For Real World Problems
 Hardware Architecture
 Programming Models
 Design Approach

 Projects

8

Importance of Information and Systems

9

Future of Information

Medical Data

Data Explosion Projected to reach 35 Zetabytes by 2020
(Mckinsey Global Institute Analysis)

4 Vs of Big Data

Volume
Data Size

Variety
Data Structure relationship

Velocity
Real Time, Streaming (data rate)

Value
Data for decision making

Big Data = Big Opportunities

12

 Moore's Law: microprocessor transistor counts doubling time of 18 months [1]

Past Present and Future of Digital Electronics

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, April 1965.

13

Frequency and Power Issues

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,
vol. 38, no. 8, April 1965.

We have Digital System
Having thousands of processing cores

Digital Systems: Future Trend

It is estimated that sometime between the years 2025 and 2050, a personal computers will exceed the
calculation power of a human brain.

15

Problems of Digital Systems

Power Wall
Memory Wall
Programming Wall
Scalability
Potability

16

Focus to Improve System Performance

Multi-core system
• RISC

• Vector & hardware accelerator cores

Access Pattern-based Memory Architecture
• Irregular/complex access patterns

Programming Model

 Personal Introduction
 Problem Formulation

 Importance of Information
 Importance of Digital Electronics
 Problems and Solution

 HPC For Real World Problems
 Hardware Architecture
 Programming Models
 Design Approach

 Projects

18

Processor Architectures

 Single Instruction Single Data (SISD)
 Single Instruction Multiple Data (SIMD)
 Multiple Instruction Single Data (MISD)
 Multiple Instruction Multiple Data (MIMD)

19

Basic Processor Architectures

20

Uni Processor Architecture
Introduc tion

21

Uni Core

22

Basic introduction of Microprocessor

0 A B
A+B

1 A B
A-B

23

Multi-core Processor

Types of MIMD Architecture

25

SMP: Shared Memory Processor

26

SMP

27

Distributed Memory

28

29

30

Distributed Memory

31

Memory Architecture and Programming

32

Memory Arch..

33

Shared Memory Architecture

34

35

Message Passing: Memory Sharing

Available Computer Architectures

There are currently two trends in utilizing the increased transistor
count afforded by miniaturization and advancements in
semiconductor materials:

 Increase the on-chip core count,
 Combined with augmented specialized SIMD instruction sets (e.g., SSE and

its subsequent versions, MMX, AESNI, etc.) and larger caches.
 This is best exemplified by Intel’s x86 line of CPUs and the Intel Xeon Phi

coprocessor.
 Combine heterogeneous cores in the same package,

 Typically CPU and GPU ones, each optimized for a different type of task.
 This is best exemplified by AMD’s line of Accelerated Processing Unit (APU)

chips. Intel is also offering OpenCL-based computing on its line of CPUs with
integrated graphics chips.

Reconfigurable Accelerators

HPC
Reconfigurable
Architecture

38

CPU: Intel Processor

CPUs employ large on-chip
(and sometimes multiple)
memory caches, few
complex (e.g., pipelined)
arithmetic and logical
processing units (ALUs), and
complex instruction decoding
and prediction hardware to
avoid stalling while waiting
for data to arrive from the
main memory.

39

Intel Xeon Phi

 A Super-scalar Architecture

 Xeon Phi comes equipped upto 72 x86 cores that are heavily
customized Pentium cores.

 The customizations include the ability to handle four threads at
the same time.

 The coherency is managed by distributed tag directories (TDs)

Intel Super Scalar: A Many Core Architecture

41

Graphics Processing Unit (GPU) and CPU

 GPUs have been developed as a means of processing
massive amount of graphics data very quickly, before they
are placed in the card’s display buffer.

 Their design envelope dictated a layout that departed from
the one traditionally used by conventional CPUs.

 GPU uses small on-chip caches with a big collection of
simple ALUs capable of parallel operation, since data reuse
is typically small for graphics processing and programs are
relatively simple. In order to feed the multiple cores on a
GPU, designers also dedicated very wide, fast memory
buses for fetching data from the GPU’s main memory.

Nvidia Graphics Processing Unit (GPU)

 SM, SMM SMX (Streaming Multiprocessors): Single SMX
contains 192 cores executes in SIMD fashion

 Each SMX can run its own program.
 CUDA and OpenACC

Programming Models

GPU SMX Internal Architecture

High Performance Accelerators

AMD GPU

 AMD’s APU chips implement the Heterogeneous System
Architecture (HSA).

 The significant of AMD GPU is the unification of the memory
spaces of the CPU and GPU cores. This means that there is
no communication overhead associated with assigning
workload to the GPU cores, nor any delay in getting the results
back.

 This also removes one of the major hassles in GPU
programming, which is the explicit (or implicit, based on the
middleware available) data transfers that need to take place.

 The HSA architecture identifies two core types:

 The Latency Compute Unit (LCU), which is a
generalization of a CPU. A LCU supports both its native
CPU instruction set and the HSA intermediate language
(HSAIL) instruction set.

 The Throughput Compute Unit (TCU), which is a
generalization of a GPU. A TCU supports only the HSAIL
instruction set. TCUs target efficient parallel execution.

47

TILERA’S TILE-GX8072

48

Power PC

 Master Core: 64-bit PowerPC core also called the Power
Processing Element.

 Worker Core: Synergistic Processing Element SPE having
128-bit vector processors.

 Own SIMD instruction set.

Programming Model

 C/C++
 OpenMP
 OpenACC
 OpenCL
 HLS

50

Parallel Programming Paradigms --Various Methods

 There are many methods of programming parallel computers. Two of
the most common are message passing and data parallel.
 Message Passing - the user makes calls to libraries to explicitly share

information between processors.
 Data Parallel - data partitioning determines parallelism
 Shared Memory - multiple processes sharing common memory space
 Remote Memory Operation - set of processes in which a process can

access the memory of another process without its participation
 Threads - a single process having multiple (concurrent) execution

paths
 Combined Models - composed of two or more of the above.

Note: these models are machine/architecture independent, any of the
models can be implemented on any hardware given appropriate operating
system support. An effective implementation is one which closely
matches its target hardware and provides the user ease in programming.

51

Parallel Programming Paradigms:
Message Passing

 The message passing model is defined as:
 set of processes using only local memory
 processes communicate by sending and receiving messages
 data transfer requires cooperative operations to be performed

by each process (a send operation must have a matching
receive)

 Programming with message passing is done by linking with and
making calls to libraries which manage the data exchange
between processors. Message passing libraries are available
for most modern programming languages.

52

Parallel Programming Paradigms: Data Parallel

 The data parallel model is defined as:
 Each process works on a different part of the same data structure
 Commonly a Single Program Multiple Data (SPMD) approach
 Data is distributed across processors
 All message passing is done invisibly to the programmer
 Commonly built "on top of" one of the common message passing

libraries
 Programming with data parallel model is accomplished by writing a

program with data parallel constructs and compiling it with a data
parallel compiler.

 The compiler converts the program into standard code and calls to a
message passing library to distribute the data to all the processes.

53

Architectures Programming

 Single Instruction Multiple Data (SIMD) architectures can exploit significant
data-level parallelism (matrix, images, signal processing), fetching one
instruction per data operation.

 SIMD allows programmer to think sequentially and achieve parallel speed-ups
 Multiple Instruction Multiple Data (MIMD) architecture relies on a number of

independent processors that can operate upon separate data concurrently and
asynchronously.

 Hence each processor has its own program memory or has access to program
memory.

 GPU exploits task-level parallelism, using multi-threading to hide memory
latency.

 It has many functional units, as opposed to a few deeply pipelined units like a
vector processor.

54

Steps for Creating a Parallel Program

1. If you are starting with an existing serial program, debug the serial code
completely

2. Identify the parts of the program that can be executed concurrently:
 Requires a thorough understanding of the algorithm
 Exploit any inherent parallelism which may exist.
 May require restructuring of the program and/or algorithm. May require an entirely

new algorithm.
3. Decompose the program:

 Functional Parallelism
 Data Parallelism
 Combination of both

4. Code development
 Code may be influenced/determined by machine architecture
 Choose a programming paradigm
 Determine communication
 Add code to accomplish task control and communications

5. Compile, Test, Debug
6. Optimization

1. Measure Performance
2. Locate Problem Areas
 Improve them

55

Decomposing the Program
There are three methods for decomposing a problem into smaller tasks to be

performed in parallel: Functional Decomposition, Domain Decomposition, or
a combination of both

 Functional Decomposition (Functional Parallelism)
 Decomposing the problem into different tasks which can be distributed to multiple

processors for simultaneous execution
 Good to use when there is not static structure or fixed determination of number of

calculations to be performed
 Domain Decomposition (Data Parallelism)

 Partitioning the problem's data domain and distributing portions to multiple
processors for simultaneous execution

 Good to use for problems where:
 data is static (factoring and solving large matrix or finite difference calculations)
 dynamic data structure tied to single entity where entity can be subsetted (large

multi-body problems)
 domain is fixed but computation within various regions of the domain is dynamic

(fluid vortices models)
 There are many ways to decompose data into partitions to be distributed:

 One Dimensional Data Distribution
 Block Distribution
 Cyclic Distribution

 Two Dimensional Data Distribution
 Block Block Distribution
 Block Cyclic Distribution
 Cyclic Block Distribution

56

Functional Decomposing of a Program

 Decomposing the problem into different tasks which can be
distributed to multiple processors for simultaneous execution

 Good to use when there is not static structure or fixed
determination of number of calculations to be performed

Domain Decomposition (Data Parallelism)
 Partitioning the problem's data domain and distributing portions to multiple

processors for simultaneous execution
 There are many ways to decompose data into partitions to be distributed:

Generic: HPC System

void main()

{

variable initialize

Memory Data Sets

Memory Read(Local Memory)

Computations (Memory)

Transfer Data

for (…

for (…

 for (…

Memory Write(Local Memory)

}

Irregular/Complex
Applications e.g.
Sorting, Search.

Dense Applications
e.g. Matrix
Multiplication, Tile
Computation.

59

Supercomputer System Architectures

60

System Design Approach

 Design Specialized Hardware System for Life and Earth
Science Applications.
 Sensor System
 Analog Front-End Interface
 Memory System
 Processing System

61

System Design Steps : Executing a Problem

 Access Pattern
 Front-end Interface
 Memory System
 Processing System

Application
Behavior

Analog to Digital
Front-end
Interface

Memory System
Processing

System

62

Basic types of memory access patterns

 Regular access
 Fixed stride
 Predictable
 Parallel

 Irregular access
 Variable strides
 Known
» Predictable at compile-time

 Unknown
» Independent
» Dependent

Regular access pattern

 Irregular known access pattern

Irregular unknown independent access pattern

Irregular unknown dependent access pattern

data[1024];
 for(int x=y;x<100;x=x++)
 { read=data[x];
 compute(read);
 }

 data[1024];
 for(int x=0;x<5;x=x++)
 { read=data[factorial(x)];
 compute(read); }

 data[100];
 for(int x=0;x<100;x=x++)
 { read=data[read+x];
 compute(read);
 }

 Data[1024];
 addr=runtime_input();
 for(int x=0;x<5;x++)
 { read=data[factorial(x)+addr];

 compute(read); }

63

Application
Behavior

Analog to Digital
Front-end
Interface

Memory System
Processing

System

Life or Earth
Science Application

Sensors
Antenna
Bi-Medical
Camera
Display

Cache or
Scratch-pad

Main Memory
DRAM, GDDR,
Pattern-based

Uni- Multi- Core
Application Specific

RISC
CISC (Vector, GPU)
FPGA

 Personal Introduction
 Problem Formulation

 Importance of Information
 Importance of Digital Electronics
 Problems and Solution

 HPC For Real World Problems
 Hardware Architecture
 Programming Models
 Design Approach

 Projects

Target Applications Area

Life Sciences

• Biomedical Applications

• Imaging Applications

• Communication

• Defense

Earth Sciences

• Interferometric Sensors

• Oil Search

66

On Going Projects

 Low Power Low Cost Supercomputer System

 Software Defined Radio based Heterogeneous System

 Medical Application Specific Processor

 Visual Processing System

 Analog & Digital Data Acquisition System

 High Performance Single Computer Board for Military and

Industrial Applications

Low Power Low Cost Supercomputer System

Software Defined Radio based Heterogeneous System

Medical Application Specific Processor

Visual Processing System

Analog and Digital Data Acquisition System

High Performance Single Computer Board for
Military and Industrial Applications

System Design Approach to Solve Problem

 ,Multi-Core Systems

• GPU

• RISC (Intel, ARM, etc)

• ASIP (Hardware Accelerators)

 Architectures

• FPGA

– HDL and HLS

• ASIC

– DC

 Programming Models

• OpenMP

• OpenACC

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

