
Parallel Program Design

Dr. Tassadaq Hussain

2

 Applications Types
 PCAM Methodology
 Decomposition Patterns
 Program Structure

3

Applications

Compute Intensive
Data Intensive
Complex and Irregular

4

C and C++ Applications

http://people.sc.fsu.edu/~jburkardt/cpp_src/cpp_src.html

http://people.sc.fsu.edu/~jburkardt/c_src/c_src.html

http://people.sc.fsu.edu/~jburkardt/cpp_src/cpp_src.html
http://people.sc.fsu.edu/~jburkardt/c_src/c_src.html

5

PCAM Methodology

Partitioning

Communication

Agglomeration

Mapping

6

Application Understanding

Metamathematical Representation

Working Operation

7

Pseudocode

8

Decomposing Application

9

Decomposition

10

Types of Decomposition

 Functional Decomposition
 Task Parallelism
 Divide & Conquer

 Domain Decomposition
 Geometric
 Recursive Data

 Data Flow Decomposition
 Pipelining
 Event Based

11

Divide & Conquer

12

13

Geometry Decomposition

14

15

Recursive Domain Decomposition

16

Pipeline Decomposition

Depends on Processor Architecture

17

Event Based

 An event is a time-stamped message that
can represent a status change in the state
of a module, a trigger to change the state,
a request to perform an action, a response
to a previously generated request, or the
like.

18

PROGRAM STRUCTURE

Globally Parallel, Locally Sequential (GPLS):
GPLS means that the application is able to perform multiple tasks concurrently, with each

task running sequentially.

Patterns that fall in to this category include:

• Single program, multiple data

• Multiple program, multiple data

• Master-worker

• Map-reduce

Globally Sequential, Locally Parallel (GSLP):
GSLP means that the application executes as a sequential program, with individual parts of

it running in parallel when requested.

Patterns that fall in to this category include:

• Fork/join

• Loop parallelism

19

 SINGLE-PROGRAM, MULTIPLE-DATA

 Program initialization: This step usually involves deploying the program to the
parallel platform and initializing the run-time system responsible for allowing the
multiple threads or processes to communicate and synchronize.

 Obtaining a unique identifier: Identifiers are typically numbered starting from 0,
enumerating the threads or processes used. In certain cases, the identifier can be
a vector and not just a scalar (e.g., CUDA). Identifier lifetime follows the thread or
process lifetime it corresponds to. Identifiers can be also persistent, i.e., exist for
the duration of the program, or they can be generated dynamically whenever they
are needed.

 Running the program: Following the execution path corresponding to the
unique ID. This could involve workload or data distribution, diversification of roles,
etc.

 Shutting down the program: Shutting down the threads or processes, possibly
combining the partial results generated into the final answer.

20

Multi Program Multi Data

The execution platform is heterogeneous,
mandating the need to deploy different
executables based on the nodes’ architecture.

The memory requirements of the application are
so severe that memory space economy
dictates a reduction of the program logic
uploaded to each node to the bare essentials.

21

 MASTER-WORKER

Handing out pieces of work to workers Collecting the
results of the computations from the workers
Performing I/O duties on behalf of the workers, i.e.,
sending them the data that they are supposed to
process, or accessing a file Interacting with the user

22

MAP REDUCE

The map-reduce pattern, works in its generic form. A user program spawns a master
process that oversees that whole procedure.

A number of workers are also spawned; they are responsible for

(a) processing the input data and producing intermediate results.

(b) combining the results to produce the final answer.

23

 FORK/JOIN

The fork/join pattern is employed when the
parallel algorithm calls for the dynamic
creation (forking) of tasks at run-time.
These children tasks (processes or
threads) typically have to terminate (join)
before the parent process/thread can
resume execution.

24

 LOOP PARALLELISM

This pattern is particularly important for the
OpenMP platform, where the loops are
semiautomatically parallelized with the
assistance of the programmer.

The programmer has to provide hints in the
form of directives to assist with this task.

25

Task

 Select an scientific HPC application
 Compute Intensive

 Data Intensive

 Complex

 Write its equation and working principle

 Draw its CDFG based on Decomposition Pattern

 Propose a Program Structure Pattern

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

