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Motivation

• Pthread is too tedious: explicit thread 
management is often unnecessary
– Consider the matrix multiply example

• We have a sequential code, we know which loop can 
be executed in parallel; the program conversion is 
quite mechanic: we should just say that the loop is 
to be executed in parallel and let the compiler do the 
rest.

• OpenMP does exactly that!!!
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What is OpenMP?

• What does OpenMP stands for?
– Open specifications for Multi Processing via collaborative work 

between interested parties from the hardware and software 
industry, government and academia. 

• OpenMP is an Application Program Interface 
(API) that may be used to explicitly direct multi-
threaded, shared memory parallelism.

• API components: Compiler Directives, Runtime Library 
Routines. Environment Variables

• OpenMP is a directive-based method to invoke parallel 
computations on share-memory multiprocessors  
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What is OpenMP?

• OpenMP API is specified for C/C++ and Fortran.
• OpenMP is not intrusive to the original serial 

code: instructions appear in comment statements 
for fortran and pragmas for C/C++.

• OpenMP website: http://www.openmp.org
– Materials in this lecture are taken from various 

OpenMP tutorials in the website and other places.

http://www.openmp.org/
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Why OpenMP?

• OpenMP is portable: supported by HP, IBM, Intel, 
SGI, SUN, and others
– It is the de facto standard for writing shared memory 

programs.
– To become an ANSI standard?

• OpenMP can be implemented incrementally, one 
function or even one loop at a time.
– A nice way to get a parallel program from a sequential 

program.
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How to compile and run 
OpenMP programs?

• GCC 4.2 and above supports OpenMP 3.0
– gcc –fopenmp a.c
– Try example1.c

• To run: ‘a.out’
– To change the number of threads:

• setenv OMP_NUM_THREADS 4 (tcsh) or export 
OMP_NUM_THREADS=4(bash)
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OpenMP execution model

• OpenMP uses the fork-join model of parallel 
execution.
– All OpenMP programs begin with a single master thread.

– The master thread executes sequentially until a parallel region is 
encountered, when it creates a team of parallel threads (FORK).

– When the team threads complete the parallel region, they 
synchronize and terminate, leaving only the master thread that 
executes sequentially (JOIN).
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OpenMP general code structure

#include <omp.h> 
main () {
   int var1, var2, var3; 
   Serial code 
   . . . 
  /* Beginning of parallel section. Fork a team of threads. Specify 

variable scoping*/
   #pragma omp parallel private(var1, var2) shared(var3) 
   { 
      /* Parallel section executed by all threads */
     . . . 
     /* All threads join master thread and disband*/
    } 
    Resume serial code
    . . . 
} 
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Data model

• Private and shared variables  

•Variables in the global data space 
are accessed by all parallel threads 
(shared variables).

•  Variables in a thread’s private 
space can only be accessed by the 
thread (private variables)

• several variations, depending on the 
initial values and whether the results are 
copied outside the region.
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#pragma omp parallel for private( privIndx, 
privDbl ) 

  for ( i = 0; i < arraySize; i++ ) { 
     for ( privIndx = 0; privIndx < 16; 

privIndx++ ) { privDbl = ( (double) 
privIndx ) / 16; 

      y[i] = sin( exp( cos( - exp( sin(x[i]) ) ) ) ) 
+ cos( privDbl ); 

   } 
} 

Parallel for loop index is
Private by default.
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OpenMP directives

• Format:
#progma omp directive-name [clause,..] newline

(use ‘\’ for multiple lines)

• Example:
#pragma omp parallel default(shared) private(beta,pi) 

• Scope of a directive is one block of statements 
{ …}
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Parallel region construct

• A block of code that will be executed by multiple threads.
#pragma omp parallel [clause …] 
{
  ……
}  (implied barrier)

Clauses:  if (expression),  private (list), shared (list), default 
(shared | none), reduction (operator: list), firstprivate(list), 
lastprivate(list)

– if (expression): only in parallel if expression evaluates to 
true

– private(list): everything private and local (no relation with 
variables outside the block).

– shared(list): data accessed by all threads
– default (none|shared)
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• The reduction clause:

Sum = 0.0;
#pragma parallel default(none) shared (n, x) private (I) reduction(+ : sum) 
{
   For(I=0; I<n; I++) sum = sum + x(I);
}

– Updating sum must avoid racing condition
– With the reduction clause, OpenMP generates code 

such that the race condition is avoided.

• Firstprivate(list): variables are initialized with the 
value before entering the block

• Lastprivate(list): variables are updated going out 
of the block.
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Work-sharing constructs

• #pragma omp for [clause …]
• #pragma omp section [clause …]
• #pragma omp single [clause …]

• The work is distributed over the threads
• Must be enclosed in parallel region
• No implied barrier on entry, implied barrier on 

exit (unless specified otherwise)
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The omp for directive: example 
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• Schedule clause (decide how the iterations 
are executed in parallel):

schedule (static | dynamic | guided [, chunk])
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The omp session clause - example
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Synchronization: barrier
For(I=0; I<N; I++)
    a[I] = b[I] + c[I];

For(I=0; I<N; I++)
    d[I] = a[I] + b[I]

Both loops are in parallel region
With no synchronization in between.
What is the problem?

Fix:

For(I=0; I<N; I++)
    a[I] = b[I] + c[I];

#pragma omp barrier

For(I=0; I<N; I++)
    d[I] = a[I] + b[I]
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Critical session
For(I=0; I<N; I++) {
   ……
   sum += A[I];
   ……
}

Cannot be parallelized if sum is shared.

Fix:

For(I=0; I<N; I++) {
   ……
   #pragma omp critical 
  {
     sum += A[I];
   }
   ……
}
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OpenMP environment 
variables

• OMP_NUM_THREADS
• OMP_SCHEDULE 
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OpenMP runtime environment

• omp_get_num_threads
• omp_get_thread_num
• omp_in_parallel
• Routines related to locks
• ……
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OpenMP example

• See pi.c
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Sequential Matrix Multiply

For (I=0; I<n; I++)

    for (j=0; j<n; j++)

        c[I][j] = 0;

        for (k=0; k<n; k++)

              c[I][j] = c[I][j] + a[I][k] * b[k][j];
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OpenMP Matrix Multiply

#pragma omp parallel for private(j, k)

For (I=0; I<n; I++)

    for (j=0; j<n; j++)

        c[I][j] = 0;

        for (k=0; k<n; k++)

              c[I][j] = c[I][j] + a[I][k] * b[k][j];
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Travelling Salesman 
Problem(TSP)

• The map is represented as a graph with 
nodes representing cities and edges 
representing the distances between cities.

• A special node (cities) is the starting point of 
the tour.

• Travelling salesman problem is to find the 
circle (starting point) that covers all nodes 
with the smallest distance.

• This is a well known NP-complete problem.
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Sequential TSP

Init_q(); init_best();

While ((p = dequeue()) != NULL) {

    for each expansion by one city {

        q = addcity (p);

        if (complete(q)) {update_best(q);}

        else enqueue(q);

    }

}



29

OpenMP TSP

Do_work() {
  While ((p = dequeue()) != NULL) {
    for each expansion by one city {
        q = addcity (p);
        if (complete(q)) {update_best(q);}
        else enqueue(q);
    }
  }
}

main() {
   init_q(); init_best();
   #pragma omp parallel for
   for (i=0; I < NPROCS; i++)
      do_work();
}



30

Sequential SOR

• OpenMP version?
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• Summary:
– OpenMP provides a compact, yet powerful 

programming model for shared memory programming
• It is very easy to use OpenMP to create parallel programs. 

– OpenMP preserves the sequential version of the 
program

– Developing an OpenMP program:
• Start from a sequential program

• Identify the code segment that takes most of the time.

• Determine whether the important loops can be parallelized
– The loops may have critical sections, reduction variables, etc

• Determine the shared and private variables.

• Add directives
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OpenMP discussion

• Ease of use
– OpenMP takes cares of the thread maintenance.  

• Big improvement over pthread.

– Synchronization
• Much higher constructs (critical section, barrier).
• Big improvement over pthread.

• OpenMP is easy to use!!
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OpenMP discussion

• Expressiveness
– Data parallelism:

• MM and SOR
• Fits nicely in the paradigm

– Task parallelism: 
• TSP
• Somewhat awkward. Use OpenMP constructs to 

create threads. OpenMP is not much different from 
pthread. 
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OpenMP discussion

• Exposing architecture features 
(performance):
– Not much, similar to the pthread approach 

• Assumption: dividing job into threads = improved 
performance.

• How valid is this assumption in reality?
– Overheads, contentions, synchronizations, etc

– This is one weak point for OpenMP: the 
performance of an OpenMP program is 
somewhat hard to understand. 
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OpenMP final thoughts

• Main issues with OpenMP: performance
– Is there any obvious way to solve this?

• Exposing more architecture features?

– Is the performance issue more related to the 
fundamantal way that we write parallel 
program?

• OpenMP programs begin with sequential programs.
• May need to find a new way to write efficient 

parallel programs in order to really solve the 
problem. 
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