
Introduction to OpenMP

Dr. Tassadaq Hussain

• Introduction

• OpenMP basics

• OpenMP directives, clauses, and library
routines

Motivation

• Pthread is too tedious: explicit thread
management is often unnecessary
– Consider the matrix multiply example

• We have a sequential code, we know which loop can
be executed in parallel; the program conversion is
quite mechanic: we should just say that the loop is
to be executed in parallel and let the compiler do the
rest.

• OpenMP does exactly that!!!

4

What is OpenMP?

• What does OpenMP stands for?
– Open specifications for Multi Processing via collaborative work

between interested parties from the hardware and software
industry, government and academia.

• OpenMP is an Application Program Interface
(API) that may be used to explicitly direct multi-
threaded, shared memory parallelism.

• API components: Compiler Directives, Runtime Library
Routines. Environment Variables

• OpenMP is a directive-based method to invoke parallel
computations on share-memory multiprocessors

5

What is OpenMP?

• OpenMP API is specified for C/C++ and Fortran.
• OpenMP is not intrusive to the original serial

code: instructions appear in comment statements
for fortran and pragmas for C/C++.

• OpenMP website: http://www.openmp.org
– Materials in this lecture are taken from various

OpenMP tutorials in the website and other places.

http://www.openmp.org/

6

Why OpenMP?

• OpenMP is portable: supported by HP, IBM, Intel,
SGI, SUN, and others
– It is the de facto standard for writing shared memory

programs.
– To become an ANSI standard?

• OpenMP can be implemented incrementally, one
function or even one loop at a time.
– A nice way to get a parallel program from a sequential

program.

7

How to compile and run
OpenMP programs?

• GCC 4.2 and above supports OpenMP 3.0
– gcc –fopenmp a.c
– Try example1.c

• To run: ‘a.out’
– To change the number of threads:

• setenv OMP_NUM_THREADS 4 (tcsh) or export
OMP_NUM_THREADS=4(bash)

8

OpenMP execution model

• OpenMP uses the fork-join model of parallel
execution.
– All OpenMP programs begin with a single master thread.

– The master thread executes sequentially until a parallel region is
encountered, when it creates a team of parallel threads (FORK).

– When the team threads complete the parallel region, they
synchronize and terminate, leaving only the master thread that
executes sequentially (JOIN).

9

OpenMP general code structure

#include <omp.h>
main () {
 int var1, var2, var3;
 Serial code
 . . .
 /* Beginning of parallel section. Fork a team of threads. Specify

variable scoping*/
 #pragma omp parallel private(var1, var2) shared(var3)
 {
 /* Parallel section executed by all threads */
 . . .
 /* All threads join master thread and disband*/
 }
 Resume serial code
 . . .
}

10

Data model

• Private and shared variables

•Variables in the global data space
are accessed by all parallel threads
(shared variables).

• Variables in a thread’s private
space can only be accessed by the
thread (private variables)

• several variations, depending on the
initial values and whether the results are
copied outside the region.

11

#pragma omp parallel for private(privIndx,
privDbl)

 for (i = 0; i < arraySize; i++) {
 for (privIndx = 0; privIndx < 16;

privIndx++) { privDbl = ((double)
privIndx) / 16;

 y[i] = sin(exp(cos(- exp(sin(x[i])))))
+ cos(privDbl);

 }
}

Parallel for loop index is
Private by default.

12

OpenMP directives

• Format:
#progma omp directive-name [clause,..] newline

(use ‘\’ for multiple lines)

• Example:
#pragma omp parallel default(shared) private(beta,pi)

• Scope of a directive is one block of statements
{ …}

13

Parallel region construct

• A block of code that will be executed by multiple threads.
#pragma omp parallel [clause …]
{
 ……
} (implied barrier)

Clauses: if (expression), private (list), shared (list), default
(shared | none), reduction (operator: list), firstprivate(list),
lastprivate(list)

– if (expression): only in parallel if expression evaluates to
true

– private(list): everything private and local (no relation with
variables outside the block).

– shared(list): data accessed by all threads
– default (none|shared)

14

• The reduction clause:

Sum = 0.0;
#pragma parallel default(none) shared (n, x) private (I) reduction(+ : sum)
{
 For(I=0; I<n; I++) sum = sum + x(I);
}

– Updating sum must avoid racing condition
– With the reduction clause, OpenMP generates code

such that the race condition is avoided.

• Firstprivate(list): variables are initialized with the
value before entering the block

• Lastprivate(list): variables are updated going out
of the block.

15

Work-sharing constructs

• #pragma omp for [clause …]
• #pragma omp section [clause …]
• #pragma omp single [clause …]

• The work is distributed over the threads
• Must be enclosed in parallel region
• No implied barrier on entry, implied barrier on

exit (unless specified otherwise)

16

The omp for directive: example

17

• Schedule clause (decide how the iterations
are executed in parallel):

schedule (static | dynamic | guided [, chunk])

18

The omp session clause - example

19

20

Synchronization: barrier
For(I=0; I<N; I++)
 a[I] = b[I] + c[I];

For(I=0; I<N; I++)
 d[I] = a[I] + b[I]

Both loops are in parallel region
With no synchronization in between.
What is the problem?

Fix:

For(I=0; I<N; I++)
 a[I] = b[I] + c[I];

#pragma omp barrier

For(I=0; I<N; I++)
 d[I] = a[I] + b[I]

21

Critical session
For(I=0; I<N; I++) {
 ……
 sum += A[I];
 ……
}

Cannot be parallelized if sum is shared.

Fix:

For(I=0; I<N; I++) {
 ……
 #pragma omp critical
 {
 sum += A[I];
 }
 ……
}

22

OpenMP environment
variables

• OMP_NUM_THREADS
• OMP_SCHEDULE

23

OpenMP runtime environment

• omp_get_num_threads
• omp_get_thread_num
• omp_in_parallel
• Routines related to locks
• ……

24

OpenMP example

• See pi.c

25

Sequential Matrix Multiply

For (I=0; I<n; I++)

 for (j=0; j<n; j++)

 c[I][j] = 0;

 for (k=0; k<n; k++)

 c[I][j] = c[I][j] + a[I][k] * b[k][j];

26

OpenMP Matrix Multiply

#pragma omp parallel for private(j, k)

For (I=0; I<n; I++)

 for (j=0; j<n; j++)

 c[I][j] = 0;

 for (k=0; k<n; k++)

 c[I][j] = c[I][j] + a[I][k] * b[k][j];

27

Travelling Salesman
Problem(TSP)

• The map is represented as a graph with
nodes representing cities and edges
representing the distances between cities.

• A special node (cities) is the starting point of
the tour.

• Travelling salesman problem is to find the
circle (starting point) that covers all nodes
with the smallest distance.

• This is a well known NP-complete problem.

28

Sequential TSP

Init_q(); init_best();

While ((p = dequeue()) != NULL) {

 for each expansion by one city {

 q = addcity (p);

 if (complete(q)) {update_best(q);}

 else enqueue(q);

 }

}

29

OpenMP TSP

Do_work() {
 While ((p = dequeue()) != NULL) {
 for each expansion by one city {
 q = addcity (p);
 if (complete(q)) {update_best(q);}
 else enqueue(q);
 }
 }
}

main() {
 init_q(); init_best();
 #pragma omp parallel for
 for (i=0; I < NPROCS; i++)
 do_work();
}

30

Sequential SOR

• OpenMP version?

31

• Summary:
– OpenMP provides a compact, yet powerful

programming model for shared memory programming
• It is very easy to use OpenMP to create parallel programs.

– OpenMP preserves the sequential version of the
program

– Developing an OpenMP program:
• Start from a sequential program

• Identify the code segment that takes most of the time.

• Determine whether the important loops can be parallelized
– The loops may have critical sections, reduction variables, etc

• Determine the shared and private variables.

• Add directives

32

OpenMP discussion

• Ease of use
– OpenMP takes cares of the thread maintenance.

• Big improvement over pthread.

– Synchronization
• Much higher constructs (critical section, barrier).
• Big improvement over pthread.

• OpenMP is easy to use!!

33

OpenMP discussion

• Expressiveness
– Data parallelism:

• MM and SOR
• Fits nicely in the paradigm

– Task parallelism:
• TSP
• Somewhat awkward. Use OpenMP constructs to

create threads. OpenMP is not much different from
pthread.

34

OpenMP discussion

• Exposing architecture features
(performance):
– Not much, similar to the pthread approach

• Assumption: dividing job into threads = improved
performance.

• How valid is this assumption in reality?
– Overheads, contentions, synchronizations, etc

– This is one weak point for OpenMP: the
performance of an OpenMP program is
somewhat hard to understand.

35

OpenMP final thoughts

• Main issues with OpenMP: performance
– Is there any obvious way to solve this?

• Exposing more architecture features?

– Is the performance issue more related to the
fundamantal way that we write parallel
program?

• OpenMP programs begin with sequential programs.
• May need to find a new way to write efficient

parallel programs in order to really solve the
problem.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

