
Lab Experiment:

VLSI System Design Using High Level Synthesis
Tools

By: Dr. Tassadaq Hussain
Instructor: Mr. Waseem Khan
Riphah International University

Date: ..

I

II

0.1 Objective

This lab is for system designer and architects to understand how High
Level Synthesis (HLS) evolved from existing design methodologies and
how it can help to improve current design flows.

0.1.1 Introduction to High Level Synthesis

FPGAs have traditionally been programmed with languages and method-
ologies that stem from the Electronic Design Automation (EDA) commu-
nity. While in HPC, high level languages such as C and Fortran are used.
This design gap between EDA methodologies and HPC programmers has
slowed the adoption of FPGAs by the HPC community. Translation of
HPC algorithms into hardware is complex and time consuming. Large ap-
plications result in complex systems with a high probability of containing
design errors, and it is challenging to reuse the hardware resources. To
overcome these difficulties, FPGA designers use C-to-hardware High Level
Synthesis (HLS) that performs design modeling and validation at a higher
level of abstraction. However, this approach has some limitations. Every
application kernel requires its own accelerator. A scalar processor core is
needed to manage Local Memory data and Main Memory transfers for the
accelerators. Every change in the code of the application introduces a new
place-and-route iteration to generate the hardware accelerator. Hence,
even simple changes can lead to dramatic shifts in area usage and clock
frequency. All of these factors make design closure with custom data-path
accelerators very difficult.

The HLS design flow consists of a sequence of steps (see Figure 1),
with each step transforming the abstraction level of the algorithm into a
lower level description. The HLS Parallelism Extraction step extracts the
Control and Data Flow Graph (CDFG) from the application to be synthe-
sized. The CDFGs describe the computational nodes and edges between
the nodes. HLS provides different methods to explore the CDFG of the
input algorithm and generates the data-path structure. The generated
data-path structure may contains the user-defined number of computing
resources for each computing node type and the number of storage re-
sources (registers). The Allocation and Scheduling step maps the CDFG
algorithm onto the computing data-path and produces a Finite State Con-
trol Machine. The Refining step uses the appropriate board support pack-

III

age and performs synthesis for the communication network. Finally, the
HDL-RTL Generation step produces the VHDL files to be supplied to the
proprietary synthesis tools for the targeted FPGA.

Over the past few years, HLS tools have been developed that add the
necessary technologies to become truly production-worthy. Initially lim-
ited to data path designs, HLS tools have now started to address complete
systems, including control-logic and complex on-chip, off-chip interconnec-
tion. Xilinx Vivado HLS [1] (built on AutoESL tool technology [2]) accel-
erates design implementation. It takes C, C++, or SystemC as its input
and produces device-specific RTL after exploring a multitude of micro-
architectures based on design requirements. Impulse Accelerated Tech-
nologies develops the ImpulseC programming language [3]. The ImpulseC
tools comprise a software-to-hardware compiler that translates individual
Impulse C processes to hardware and generates the necessary process-to-
process interface logic. Handel-C, developed by Celoxica [4], is based on
the syntax of conventional C language. Programs written in Handel-C are
sequential. To exploit benefits of parallelism from the target hardware,
Handel-C provides parallel constructs such as pipelined communication
and parallel sections. Catapult C, designed by Mentor Graphics [5], is a
subset of C++. The code that is compiled through Catapult C may be
general purpose and result in much different hardware implementations

Figure 1: Conventional High Level Synthesis Tool Flow

IV

with different timing and resource constraints. The Catapult C environ-
ment takes constraints and platform details in order to generate a set of
optimal implementations. Ylichron (now PLDA Italia) developed a source-
to-source C to VHDL compiler toolchain targeting system designers called
HCE (Hardware Compiling Environment). The HCE toolchain [6] takes
ANSI-C language as input, which describes the hardware architecture with
some limitations and extensions. ROCCC 2.0 [7] is a free and open source
tool that focuses on FPGA-based code acceleration from a subset of the C
language. ROCCC tries to exploit parallelism within the constraints of the
target device, optimize clock cycle time by pipelining, and minimize area.
ROCCC is one of the few HLS tools that does memory access optimization.
LegUp [8] is an open srouce tool which allows different software techniques
to be used for hardware design. It accepts a standard C program as input
and automatically compiles the program to a hybrid architecture contain-
ing an FPGA-based MIPS soft processor and custom hardware accelerators
that communicate through a standard bus interfaces.

0.2 Reverse Time Migration

RTM is the most advance seismic data processing method used to recover
inside subsurface images of the Earth. The complete system is shown in
Figure 2. It is based on wave equation through a volume representing
the earth subsurface. RTM’s main strength is the ability of showing the
bottom of salt bodies at several kilometers of the earth’s interior. Figure
3(a) presents the pseudo-code of the RTM algorithm with partial differ-
ential equation (PDE) solver. RTM works by running the WFC, forward
in time for the source and backwards in time for the receiver. In RTM,
both forward and backward propagation parts of the method utilizes the

Figure 2: Wave Field Computation Architecture

V

(a) (b)

Figure 3: (a) Reverse Time Migration Algorithm (b) Wave Field Computation’s Mathematical
Representation

same PDE solver for computing the Wave Field Computation (see Figure
3(b)). It is analyzed by [9] that 90% and 70% execution time is utilized
while compute the Wave Field computation (WFC) part. This shows the
significance in accelerating this part of code. Our RTM implementation is
based on an explicit 3D high order Finite Difference numerical scheme for
the wave equation.

-
Mathematical representation of Wave Filed Computation part is men-

tioned in Figure 3(b). We can see the actual code of the compute intense
kernel for WFC called Kernel rivera in Figure 5. WFC uses four volumes
of data v,p1,p2 (input volume) and p3 (output volume). We separated
WFC into two parts.

� Integration over time

� Stencil computation

0.2.1 Integration over time

Integration over time needs one operand from each v and p1 volumes, out-
put of stencil unit and two constants. This unit requires few computations
and data access of p1 and v volumes is streaming.

VI

(a) (b)

Figure 4: FIR[n]=
∑N

k=0 hkx [n− k]: (a) Fully Parallel FIR Filter (b) Odd Symmetric FIR Filter

0.2.2 Stencil Computation

The stencil computation unit consists of 3 Symmetric finite impulse re-
sponse (FIR) filters. For every stencil output point 25 operands are re-
quired from p2 volume. In addition to these data variables there are 14
constant operands are used. All these operands are of single precision float-
ing point i.e. 4 bytes/operand is required. Due to sparse access pattern of
Stencil compute unit it needs special consideration. In order to know the
approaching details it is important to revisit the 3-Stencil explanations.

3D-Stencil

Stencils are used in numerous scientific applications like, computational
fluid dynamics, geometric modeling, electromagnetic, diffusion and image
processing. These applications are often implemented using iterative finite-
difference techniques that sweep over a two dimensional (2D) or 3D grid,
while performing computations called stencil on the nearest neighbors of
current point in the grid. In a stencil operation, each point in a multidi-
mensional grid is updated with weighted contributions from a subset of its
neighbors in both time and space. Stencils can be either non-symmetric
or symmetric with even or odd symmetry.

Stencil operation can be understood by taking a look at Figure 4 which
mathematically explains one dimensional (1D) stencils. A fully parallel
FIR n-tap filter uses multipliers equal to the number of coefficients (n)
or n-taps and (n-1) number of adders. Coefficients are often symmetrical
around the center tap or two innermost taps of the filter. This symmetry
allows the number of multiplication to reduce to half. Even Symmetry
eliminates the number of multiplication to half by pre-adding the top val-

VII

#de f i n e MX 64
#de f i n e MY 64
#de f i n e MZ 64
f o r (k = Stencil ; k < MY − Stencil ; k++)
f o r (j = Stencil ; j < MZ − Stencil ; j++)
f o r (i = Stencil ; i < MX − Stencil ; i++)
{
iter = k *(MX*MZ) + (j*MX) + i ;
tmp =
Y1 *(P2_linear [i+j*iter_j+(k−1)*iter_k] + P2_linear [i+j*iter_j+(k+1)*iter_k]) +
Y2 *(P2_linear [i+j*iter_j+(k−2)*iter_k] + P2_linear [i+j*iter_j+(k+2)*iter_k]) +
Y3 *(P2_linear [i+j*iter_j+(k−3)*iter_k] + P2_linear [i+j*iter_j+(k+3)*iter_k]) +
Y4 *(P2_linear [i+j*iter_j+(k−4)*iter_k] + P2_linear [i+j*iter_j+(k+4)*iter_k]) +
c00 * P2_linear [iter] +
X4 *(P2_linear [i+(j−4)*iter_j+k*iter_k] + P2_linear [i+(j+4)*iter_j+k*iter_k]) +
X3 *(P2_linear [i+(j−3)*iter_j+k*iter_k] + P2_linear [i+(j+3)*iter_j+k*iter_k]) +
X2 *(P2_linear [i+(j−2)*iter_j+k*iter_k] + P2_linear [i+(j+2)*iter_j+k*iter_k]) +
X1 *(P2_linear [i+(j−1)*iter_j+k*iter_k] + P2_linear [i+(j+1)*iter_j+k*iter_k]) +
Z4 *(P2_linear [(i−4)+j*iter_j+k*iter_k] + P2_linear [(i+4)+j*iter_j+k*iter_k]) +
Z3 *(P2_linear [(i−3)+j*iter_j+k*iter_k] + P2_linear [(i+3)+j*iter_j+k*iter_k]) +
Z2 *(P2_linear [(i−2)+j*iter_j+k*iter_k] + P2_linear [(i+2)+j*iter_j+k*iter_k]) +
Z1 *(P2_linear [(i−1)+j*iter_j+k*iter_k] + P2_linear [(i+1)+j*iter_j+k*iter_k]) ;
P3_linear [iter] = tmp ;
}

Figure 5: Non-Synthesizable WFC Code used for Functional Verification

ues together. Odd symmetry is slightly different. In odd symmetry center
tap is handled separately because there is no pre-adder. Other than odd
symmetry value rest of the architecture is similar to even symmetry. Odd
symmetry 1D-FIR is shown in Figure 4(b).

In 3D stencil, each computed point needs to access data from the three
axis of a volume. Therefore, the 3D stencil computation increases the
complexity not only by increasing number of computation 3 times but also
due to sparse data access pattern arising from a volume linearly laid out
in memory.

0.3 Functional Verification

High-level functional verification provides substantial decrease in the test
generation time, test application time. By utilizing debug/varify facility
it increases the fault coverage and decrease area/delay overheads. In this
section we test and verify behavior of WFC system prior to synthesis. In
order to determine intent of the WFC system HLS provides facility to
perform functional verification and fault simulation at higher level. To
verify and compare intent of WFC system we used non-synthesizeable C
code of kernel-rivera kernel (see Figure 5).

VIII

0.4 Experimental Data

This section deals with exploiting parallelism from the proposed architec-
ture. In this experiment, we are using ROCCC [7] HLS tools to generate
hardware accelerators. At first we will design 8-tap FIR filter hardware
accelerator (Shown in Figure 4). The synthesizable source code for FIR is
mentioned in Figure 6.

// A 8−tap FIR f i l t e r .
// By Dr . Tassadaq Hussain

typede f s t r u c t
{ // Inputs

i n t A0_in ;
i n t A1_in ;
i n t A2_in ;
i n t A3_in ;
i n t A4_in ;
i n t A5_in ;
i n t A6_in ;
i n t A7_in ;
// Outputs
i n t result_out ;

} FIR_t ;

FIR_t FIR (FIR_t FIR_8)
{ // Should be propagated

const i n t filer [8] = { 3 , 5 , 7 , 9 , 11 , 12 , 21 , 33} ;
FIR_8 . result_out = FIR_8 . A0_in * filer [0] +
FIR_8 . A1_in * filer [1] +
FIR_8 . A2_in * filer [2] +
FIR_8 . A3_in * filer [3] +
FIR_8 . A4_in * filer [4] +
FIR_8 . A5_in * filer [5]+
FIR_8 . A6_in * filer [6]+
FIR_8 . A7_in * filer [7] ;

r e turn FIR_8 ;
}

Figure 6: Synthesizable 8-tap FIR Filter Hardware Accelerator

Table 1: Achieved GFLOPS by HLS Hardware Accelerator

System Name Floating Point Number Achieved GFLOPs
Operation per Output Of Clocks @ MHz Clock

..................................

..................................

..................................

IX

#inc lude ” roccc−l i b r a r y . h”
void FIR_SYSTEM_RIU (i n t * A , i n t * B)
{

i n t i ;
i n t my_tmp ;

f o r (i = 0 ; i < 100 ; ++i)
{

// Example code to pass stream A into stream B
FIR (A [i] , A [i+1] ,A [i+2] ,A [i+3] ,A [i+4] ,A [i+5] ,A [i+6] ,A [i+7] , my_tmp) ;
B [i]=my_tmp ;

}
}

Figure 7: Synthesizable FIR System

freq ∗ #ofClocks
Single Output Point ∗

Floating Point Operations
Single Output Point

Figure 8: HLS Hardware Accelerator GFLOPs

Once the necessary computation and input outputs are finalized, focus
is transferred to resource allocator and scheduler.

Design different FIR systems and count their floating point operates,
number of clocks required to generate a single output and calculate GFLOPS
using 8.

1. We will use a single instance of FIR and FIR system shown in Figure 7
and calculate GFLOPS of the system.

2. Add two instances of FIR and calculate GFLOPS.

3. Add different hardware accelerators such as FFT, FIR, etc. and cal-
culate GFLOPS of system.

0.5 Discussion and Analysis

1. How many Hardware Accelerators block (functions) we can instanti-
ate in the main system (i.e. BRAM of FPGA, etc.).
...
...
...

2. What affects the theocratical and practical GFLOPs of system? (i.e.
Memory Read/Write, etc.)
...

X

...

...

3. What are the differences between handwritten HDL and HLS gener-
ated HDL (i.e. Design Time, etc.).
...
...
...

Questions and Suggestions:
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

Bibliography

[1] Feist Tom, “Vivado design suite,” Xilinx, White Paper Version, vol. 1,
2012.

[2] “AutoESL High-Level Synthesis Tool.” [Online]. Available: {http:
//www.xilinx.com/tools/autoesl.htm}

[3] “Impulse CoDeveloper Overview,” 3,April 2011. [Online]. Available:
{http://www.impulseaccelerated.com/}

[4] Matthew Bowen, “Handel-C Language Reference Manual.”

[5] Graphics, Mentor, “Catapult C synthesis overview,” 2012.

[6] Alessandro Marongiu and Paolo Palazzari, “The HARWEST Compiling
Environment: Accessing the FPGA World through ANSI-C Programs.”
CUG 2008 Proceedings, 2008.

[7] “Riverside Optimizing Compiler for Configurable Computing (ROCCC
2.0),” http://roccc.cs.ucr.edu/, 23,March 2015.

[8] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. An-
derson, S. Brown, and T. Czajkowski, “Legup: high-level synthesis for
fpga-based processor/accelerator systems,” in Proceedings of the 19th
ACM/SIGDA international symposium on Field programmable gate ar-
rays. ACM, 2011, pp. 33–36.

[9] Francisco Ortigosa, Hongbo Zhou, Santiago Fernandez, Repsol-YPF,
Mauricio Hanzich, Mauricio Araya-Polo, Flix Rubio, Ral de la
Cruz and Jos Mara Cela, “BENCHMARKING 3D RTM ON HPC
PLATFORMS,” , . [Online]. Available: {http://www.bsc.es/projects/
kaleidoskope tmp/pdf/106%20BENCHMARKING%203D%20RTM%
20ON%20HPC%20PLATFORMS 2008.pdf}

XI

