
Stand-alone Memory Controller for Graphics System

Tassadaq Hussain1, Oscar Palomar1, Osman S. Ünsal1, Adrian Cristal1, Eduard Ayguadé1,
Mateo Valero1, and Amna Haider2

1 Barcelona Supercomputing Center
2 Unal Center of Education Research and Development

1{first}.{last}@bsc.es, 2amna@ucerd.com

Abstract. There has been a dramatic increase in the complexity of graphics ap-
plications in System-on-Chip (SoC) with a corresponding increase in performance
requirements. Various powerful and expensive platforms to support graphical appli-
cations appeared recently. All these platforms require a high performance core that
manages and schedules the high speed data of graphics peripherals (camera, display,
etc.) and an efficient on chip scheduler. In this article we design and propose a SoC
based Programmable Graphics Controller (PGC) that handles graphics peripherals
efficiently. The data access patterns are described in the program memory; the PGC
reads them, generates transactions and manages both bus and connected peripherals
without the support of a master core. The proposed system is highly reliable in terms
of cost, performance and power. The PGC based system is implemented and tested
on a Xilinx ML505 FPGA board. The performance of the PGC is compared with the
Microblaze processor based graphic system. When compared with the baseline system,
the results show that the PGC captures video at 2x of higher frame rate and achieves
3.4x to 7.4x of speedup while processing images. PGC consumes 30% less hardware
resources and 22% less on-chip power than the baseline system.

1 Introduction

Graphics systems are now being used in different engineering sectors such as artificial
intelligence, robotics, telecommunication, etc. Hand-held devices, such as personal digital
assistants (PDAs), or cellular phones have embedded cameras, and most of them have mega-
pixel image sensor cameras and interactive applications such as symbol recognition, etc.
As the image resolution of these devices grows, application specific and high-performance
hardware are required to run complex graphics code.

A typical FPGA based SoC comprises one or two processor cores (master core and
the dedicated core), a programmable crossed bus arbitration module, an interrupt and direct
memory control module along with control bus and data bus. The master core can be used for
real time operation, and the dedicated core is reserved for graphics operation, whereas low
power devices have a single processor and perform camera processing in software. In line
with Moore’s law [1], the architecture of graphics devices have been developing from simple
micro-controller to multi-core processors. The computing power and memory component
speed improves at the rate of around 50% and 25% respectively per year. This is much smaller
compared to the speed of processor [2]. This speed gap widens the gap between power and
memory wall in the graphics industry and affects the performance of graphics applications.

In this work, we intend to design a low-power and high-performance bus controller called
the Programmable Graphics Controller (PGC) for FPGA based SoC. The PGC resides in



on-chip Bus Unit and holds data transfer patterns and control instructions in its program
memory. The PGC provides on-chip and off-chip bus interconnects and controls data transfer
without the support of complex bus matrix, DMA and master processor. The PGC reduces
the master/slave arbitration delay, bus switching time, balances the work load, and gives
a promising interconnection approach for multi-peripherals with the potential to exploit
parallelism while coping the memory/network latencies. PGC bus scheduler provides low-
cost and simple control that arranges multiple bus access requests and communicates with
integrated processing units. We integrated dedicated hardware accelerators in the design as
they have low footprint and low power consumption and gives high performance computation.
The PGC supports multi-peripherals (camera, display) and processor core without support of
the master cores and operating system. The integration of PGC with peripherals facilitates
the graphics system to overcome wire (interconnection) and memory read/write delays and
improves the performance of application kernels by arranging complex on-chip data transfers.

2 Related Work

Rowe et al. [3] proposed an FPGA based camera system for sensor networking applications.
The design dealt with an 8-bit microprocessor and FPGA based hardware accelerator to
capture and process the images. The system does not support high resolutions due to limited
RAM and can process 2 frame per second. Petouris et al. [4] proposed an architecture that is
used to implement and test advanced image processing algorithms. The system gives control
to the user to control camera system through LCD panel, and the system maintains contact
with a PC through a JTAG interface for storing the images on it. The design is evaluated on
Altera’s DE2 development board and is designed to be a low cost proposal for academia.
Murphy et al. [5] proposed a low cost stereo vision system on an FPGA, based on the census
transform algorithm. The design uses a camera projection model to represent the image
formation process that occurs in each of the two cameras which is suitable for independent
vehicles for agricultural applications. The PGC system does not require a master core to
manage the graphics system. The data movement is controlled by an on-chip scheduler at
higher frame rate which reduces the power and cost of system. A light weight 16-bit processor
core is also proposed in the design to perform basic image processing.

Matthew proposed an optical imaging system [6] having multiple high sensitivity cooled
CCD cameras. The system gives desired representation of point source metastases and other
small injuries. Shi et al. [7] presented a camera that can not only see but also perform
recognition called Smart Camera. The proposed camera system recognizes simple hand
gestures. The camera was built using a single chip of FPGA as processing device. The PGC
system has ability to read data from multiple image sensors and provide it to processing
core in arranged formate. The PGC bus management allows the processing core to perform
computation (recognition, transformation, etc) on run-time video at higher frame rates. 16-bit
or 32-bit processing cores can be used to perform complex algorithms.

To solve the on-chip bus bandwidth bottleneck, several types of high-performance on-
chip buses have been proposed. The multi-layer AHB (ML-AHB) bus-matrix proposed by
ARM [8] has been used in may SoC designs due to its simplicity, the good architecture
and low power. The ML-AHB bus-matrix interconnection scheme provides parallel access
paths between multiple masters and slaves in a system. Hussain et al. [9–12] discussed the
architecture of a memory controller and its implementation on a Xilinx Virtex-5 in order



(a) (b)

Fig. 1. PGC : (a) Internal Structure (b) Flowchart

to establish a fast communication with the host. The PLB crossbar switch (CBS) from
IBM [13] allows communication between masters on one PLB and slaves on the other. The
CBS supports concurrent data transfers on multiple PLB buses along with a prioritization
method to hold multiple requests to a generic slave port. Like other on-chip Bus Units, AHB
(ML-AHB) and PLB (CBS) use a master core that manages on-chip bus transactions. The
PGC controls processing units and manages data transfer between them without support of
complex bus-matrix and processor core. This reduces request/grant time and bus arbitration
time. Moreover, the support for strided and scatter/gather data transfers allows the PGC
system to manage complex data transactions.

3 PGC Graphics System Specification

In this section, we describe the specification of PGC system and design its architecture. The
section is further divided into four subsections: Overview of PGC System, the Processing
Units, the Memory Unit and the Bus Unit.

3.1 Overview of PGC System
The PGC graphics system architecture is pipelined from the sensor chip over the wire to
the processing chip. The PGC inner architecture is shown in Figure 1(a), which shows the
interconnection with the processing units and memory. The system uses a combined hard-
ware/software solution that includes hardware accelerators and a RISC processor core. The
camera control unit (CCU) and display control unit (DCU) are custom hardware accelerators
and control the camera sensor and the display unit respectively. The Local Memory holds
the CCU/DCU data for basic image/video processing using the Processor Core. To store
high resolution images the Global Memory is integrated. The Program Memory is used to
hold CCU/DCU program description and data transfer information. Depending upon the data
transfer the Address Manager takes single or multiple instructions from Program Memory and
schedules the data movement for CCU and DCU. The PGC Scheduler handles the concurrent
bus request by the CCU and DCU and rearranges multiple bus access requests and arbitrates
data transfer without creating bus contention.

We define two use cases of graphic system (shown in Table 1); the Video Mode and
the Snapshot Mode. The processing step is used to perform filtering, compression, trans-
formation, etc. on the input image. Each use case has two variants: with-processing and
without-processing. The resolution of Video Mode is selected to fit in Local Memory of the
target device. In our current design, the Video Mode supports up to 640×480 image resolution.



Table 1. Graphics System: Use Case, Mode of Operations

Use Case Processing PixelDepth Resolution frame/sec (fps)
Video Mode

Single-Camera Video With/Without 24-bit VGA = 640×480 variable up to 150

Dual-Camera Video With 24-bit VGA = 640×480 variable

Snapshot Mode With/Without 24-bit QSXGA = 2560×2048 1

It reads multiple frames (images) per second (fps) from the camera sensor and transfers them
to display unit. The Video Mode is further divided into two modes. The Single-Camera Video
uses a single image sensor and Dual-Camera Video supports two image sensors. The Snapshot
Mode of operation takes a still image from the image sensor, performs software processing if
required and writes to Global Memory. The Snapshot Mode supports a maximum resolution
of 2560×2048 with 24-bit pixels (16 Mega colors) depth.

The working operation of the PGC system is shown in Figure 1(b). During programming-
time, the program memory of PGC is initialized. The program memory holds the instructions
of CCU/DCU program registers and data transfer. During initialization, the PGC programs
the CCU and DCU according to the different use cases (Video Mode or Snapshot Mode).

3.2 Processing Unit
The PGC supports two types of cores: the Application Specific Accelerator Core and the
RISC Core.

3.2.1 Application Specific Accelerator Core Camera Control Unit (CCU) and Display
Control Unit (DCU) Application Specific Accelerator Cores are used in the design to control
camera and display units respectively. The CCU grabs raw data from Image sensor, processes
it and transfers it to the system via on-chip bus. The major function blocks of CCU are Camera
Interface Front-End, Image Signal Processor, Color processing, Scaling, Compression, and
Bus controller. Each CCU block has memory mapped internal registers that can be initialized
and programmed by the processor core.

The DCU is used to control and display image data on LCD panel. The DCU supports
LCD 16bpp up to 24bpp colors and user defined resolution from VGA to QSXGA. Program-
ming is done by register read/write transactions using a slave interface. The DCU consumes
425 registers and 312 LUTs on a V5-Lx110T FPGA device.

The CCU and DCU data rate is given by Formula Outputdata rateshown in Figure 2. The
Analog Interfacewidth represents the analog port width of Image sensor and display. Both
CCU and DCU support a 32-bit parallel interface (Analog Interfacewidth) to communicate
with image sensor and display (LCD). When the graphics system architecture is finalized,
a top-level software API for the target product is provided. Each hardware block of DCU
and CCU is invoked by the processor using memory mapped register sets which change the
operation of the internal hardware architecture.

3.2.2 RISC Core A low power and light weight RISC processor core is used to provide
programmability, flexibility and software data processing. The processing core changes the

Outputdata rate=Resolution∗fps∗ PixelDepth

Analog Interfacewidth

Fig. 2. CCU and DCU Data Rate



features by programming the PGC system using a software API. The API can be used to
correct design errors, update the system to a new graphic standard and add more features to
the graphics system. The proposed processor core has 16-bit data bus, 16-general purpose
registers, custom instruction set, non-pipelined Load/Store access, hardwired control unit,
64KBytes address space 16 interrupts and memory mapped I/O. 1KBytes of memory is
allocated for display and camera control units using chip select. On a V5-Lx110T FPGA
device, the core uses 481 registers, 1496 LUTs and 4 Brams.

3.3 Memory Unit
The PGC graphics system memory [14] is organized into two sections: the Local Memory,
and the Global Memory.

3.3.1 Local Memory The Local Memory is used to support run-time video processing. It
also reduces wire delay, data access latency and provide parallel read/write accesses to the
processing core. The memory is shared between processor, CCU and DCU. During Video
Mode, two frames buffers are required: one for processing and other for displaying. Each
VGA frame has 900KBytes of size therefore 2MBytes of Local Memory are reserved. To
save the image in Snapshot Mode we use Global Memory.

3.3.2 Global Memory The slowest type of memory in the graphics system is Global
Memory and is accessible by the whole system. The Global Memory has SDRAM, SD/SDHC
cards, etc. interfaces to read/write data. Even though the PGC system has an efficient way
of accessing Global Memory that best utilizes the bandwidth, it still has substantially higher
latency with respect to the Local Memory.

3.4 Bus Unit
Two buses are used in the graphics system which are the Graphics Bus and the System Bus.
The Graphics Bus is used for internal communication between the processing units and
Local Memory. The System Bus is used to communicate with external peripherals such as
global memories. Both buses can operate in parallel. This section is further divided into three
subsections: Bus Specification, Bus Control Unit and Bus Interconnect Network.

3.4.1 Bus Specification It is important to calculate the required data-rate for each use
case before selecting and configuring the Bus Unit. This section is further divided into three
subsections: Graphics Bus Specification, System Bus Specification and Bus Usage.

Graphics Bus Specification: The clock of the camera and display is directly synchro-
nized with the output data hence define the bandwidth of Graphics Bus. The actual theoretical
data rate of the Graphics Bus (GBB) is the total bandwidth of master sources (shown in
Figure 3(a)). For example, during Video Mode (without-processing) the PGC reads streaming
data from CCU and writes directly to DCU. For Video Mode with-processing, the PGC takes
video frames from CCU, writes them to Local Memory for processing and then transfers the
processed frames to DCU. In this case the PGC operates CCU and DCU in parallel, therefore
the bandwidth of the Graphics Bus is the sum of CCU and DCU data-rates. For dual camera,
the PGC takes two video frames and transfers them to CCU. The required Graphics Bus
bandwidth (shown in Figure 3(a)) with single camera without processing and with processing
is given by the formula GBBSC and GBBSCP respectively. Figure 3(a) also presents the



(a) (b)

Fig. 3. (a) Graphics Bus Required Bandwidth (b) PGC Graphics Bus Unit

bandwidth of dual camera GBBDC . The Local Memory provides high bandwidth and has 2
cycles of latency for an individual transfer. The Bus Latency contains the on-chip/off-chip
memories read/write and on-chip bus delays. The Graphics Bus manages multiple read/write
access transactions in a single transfer and pipelines the multiple stream, thus reducing the
overhead of Local MemoryLatency and improving the bus performance. After calculating bus
bandwidth and considering the different use cases we selected a bus with 100 Mhz of clock
speed and 32 bit-width.

System Bus Specification: The System Bus manages data transfers during Snapshot
Mode. The PGC reads data from image sensor and writes it to Global Memory. The bandwidth
requirements of System Bus for Snapshot Mode are given by the Formula (SBBSN ) (shown
in Figure 3(a)).

Bus Usage: The PGC Graphics Bus has 400 MB/s of bandwidth, so it takes 10 nsec to
transfer 1 pixel (32bit). For example, the graphics bandwidth for video of 30 fps (without-
processing) is 9 Mega pixels per second. This means each pixel takes 111 nsec and occupies
Graphics Bus for 9% of its time, given by the formula Percentage of Bususage (shown in
Figure 3(a)). For Video Mode with-processing, the Graphics Bus takes 111 nsec to transfer
one pixel from CCU to Local Memory, and it takes the same time to transfer it to DCU.
Similarly Video Mode needs 18 Mega pixels of bus bandwidth, that takes 56 nsec to transfer a
pixel between image and display accelerators. The display camera interface for Video Mode
utilizes graphics for approximately 14% of total bus time. The Snapshot Mode requires bus
bandwidth of 5 Mega pixels to transfer one image (QSXGA resolution without-processing)
from CCU to the Global Memory.

3.4.2 Bus Control unit The PGC control unit uses program memory, scheduler and
address manager, to manage the processing units and memory units. The program memory
holds descriptors that define the data movement between CCU/DCU, processor core and
memory unit. The descriptors allow the programmer to describe the shape of memory patterns
and its location in memory. A single descriptor is represented by parameters: command,
source address, destination address, priority, stream and stride. The command specifies data



transfers between single/multiple masters and single/multiple slaves. The address parameters
also specify the master and slave cores. The priority describes the selection and execution
criteria of data transfer by a master core. It also defines the order in which memory accesses
are entitled to be processed. Stream defines the number of pixels to be transferred. Stride
indicates the distance between two consecutive memory addresses of a stream. PGC manages
a complex data transfer protocol using single or multiple descriptors. Each descriptor transfers
a strided burst, by using multiple descriptors the PGC transfers more complex data. C/C++
function calls are provided to define a complex pattern in software.

The PGC bus scheduler along with address manager (shown in Figure 3(b)) arrange
requests coming from single or multi-bus masters and arbitrate master processing units. A bus
master provides address and control information to initiate read and write operations. A bus
slave responds to a transfer that is initiated by the masters core. The address manager holds
the address and control information of bus slaves. The scheduler’s interrupt controller reads
requests from master cores and routes them to the slave. The address manager’s decoder
determines for which slave a transfer is destined for. The PGC bus holds two types of status
registers: the source status and the slave status registers. The status registers indicate the state
of each master and slave, such as request, ready, busy and grant. The scheduler and address
manager administer the status register of master and slave cores respectively. The PGC
scheduler emphasizes on priority and incoming requests of the master core. At compile-time
a number of priority levels are configured for each data transfer. At run-time the scheduler
picks a master core to transfer data, only if it is ready to run and there are no higher priority
data patterns that are ready. If same priorities are assigned for more than one data pattern, the
PGC scheduler executes them in first-in first-out (FIFO) order.

At run-time, a master core generates a request, the interrupt controller reads the request
and updates its status registers. The scheduler reads data transfer information of the master and
slave cores from program memory and transfer slave core information to address manager.
The PGC address manager decodes the address of each transfer and provides a select signal
for the slave that is involved in the transfer and provides a control signal to the multiplexers. A
single master-to-slave multiplexer (MUX) is controlled by the scheduler. The master-to-slave
MUX multiplexes the write data bus and allocate data bus for a single master after getting
the response signal from the slave-to-master MUX. A slave-to-master MUX multiplexes the
read data bus and response signals from the slaves to the master. Multiple master-to-slave and
slave-to-master multiplexers can be added to implement a multi-layer Bus Unit. The PGC Bus
Unit can be programmed up to eight layer bus which requires eight pairs of master-to-slave
and slave-to-master multiplexers.

3.4.3 Bus Interconnect To connect the graphics components together, a bus interconnec-
tion is described (shown in Figure 3(b)). We select a double layer Bus Interconnect (System
Bus and Graphics Bus) for the design due to its design simplicity and low power consumption.
Each layer is controlled by a pair of master-to-slave and slave-to-master multiplexers. The
PGC scheduler and address manager control the pairs of multiplexers. The PGC Bus Inter-
connects can be configured according to the requirements of hardware accelerator, master
and slave ports. The System Bus has a simple design that uses a single master and slave port.
The bus is used to read/write high resolution image to global memory.

The Graphics Bus is employed to provide high speed link between the CCU, DCU,
processor and Local Memory components. Current PGC Graphics Bus has 5 Masters and



4 Slaves therefore the Bus Unit is configured accordingly. The proposed Bus Unit provides
standard communication protocol and implements the features required for high-performance.

4 Experimental Framework

In this section, we describe and evaluate the PGC based graphics system. In order to evaluate
the performance of the PGC system, the results are compared with a generic graphics system
managed by the MicroBlaze processor. The Xilinx Integrated Software Environment and
Xilinx Platform Studio are used to design the graphic systems. The power analysis is done
by Xilinx Power Estimator (XPE). A Xilinx ML505 [15] development board is used to test
the systems. For the implementation of graphics system the THDB-D5M Camera and the
TRDB-LTM LCD Touch Panel by Terasic have been chosen. This section is divided into two
subsections: the MicroBlaze based Graphics System and the PGC based Graphics System.

4.1 MicroBlaze based Graphics System

The FPGA based MicroBlaze system is proposed (Figure 4 (a)) to operate graphics system.
The design (without CCU & DCU) uses 9547 flip-flops, 11643 LUTs and 51 BRAMs in a
Xilinx V5-Lx110T device. The system architecture is further divided into the Processor Core,
the Shared Peripheral Unit, and the Bus Unit.

4.1.1 The Processor Unit The MicroBlaze processor [16] has Harvard memory architec-
ture where instruction and data accesses have separate 32-bit address spaces. Two MicroBlaze
cores are used in the graphics system which are the Master core and the Graphics Core. The
Master core is used to program, schedule and manage the system components. The camera
and display hardware scheduling and data memory management are controlled by Graphics
processor. Both cores use local memory Bus (LMB) [17] to link with local-memory (FPGA
BRAM) that offers single clock cycle access to the local BRAM.

4.1.2 The Bus Unit In the design, a Processor Local Bus (PLB) [18] provides connection
between peripheral components and microprocessors. The PLB has 32 bit-width and is
connected to a bus control unit, a watchdog timer, separate address read/write data path units,
and an optional DCR (Device Control Register) slave interface that provides access to a bus
error status registers. Bus is configured for single master (MicroBlaze) and multi slaves. The
PLB provides maximum of 400 MBytes of bandwidth while operating at 100Mhz and 32-bit
width, with byte enables to write byte and half-word data.

(a) (b)

Fig. 4. Graphics System: (a) MicroBlaze Core System (b) PGC System



4.1.3 The Shared Peripheral Unit The Mutex core is used to provide synchronization
when accessing shared resources. The core has a configurable number of mutexes and can
lock the scheme. The Mailbox core is used to pass messages between processor cores in FIFO.
The mailbox core offers an interrupt line if a core wants to indicate the presence of data.

4.2 PGC based Graphics System

The PGC based graphics system is shown in Figure 4(b) having components similar to the
MicroBlaze based graphic system. The implementation details of PGC based graphics system
are addressed in Section 3. The main difference between PGC and MicroBlaze based systemis
that PGC system takes instructions during initialize-time and at run-time it manages and
schedules data transfer without the support of the processor. The processor core and System
Bus remain free for the use cases which do not involve processing. The design (without CCU
and DCU) uses 5547 flip-flops, 6643 LUTs and 35 BRAMs in a Xilinx V5-Lx110T device.

5 Results and Discussion

This section analyzes the results of different experiments conducted on the different graphic
systems. The experiments are classified into four subsections: Bus Performance, Snapshot
Mode Performance, Applications Performance, and Area & Power.

5.1 Bus Performance

To measure the bus performance, the graphic systems are executed on Video Mode (without-
processing) having fixed resolution (640×480) and variable frame rate (frame per second -
fps). The image sensor is programmed to transfer variable frames (fps) and each frame has
VGA quality. Inside DCU we integrated a controller that detects video frame rate, the speed
at which frames are coming. A hardware timer is added to the on-chip bus controller that
measures clocks used to transfer frames between master to slave peripherals. This section
discusses results for Single-Camera Bus Bandwidth and Multi-Camera Bus Bandwidth.

(a) (b)

Fig. 5. Bandwidth Required For Different Frame Rate: (a) Display Camera Video Transfer Time (b)
Dual Camera System



5.1.1 Single-Camera Bus Bandwidth In this section, we compare the bus performance
of graphic systems while using single image and display units. Figure 5 (a) shows the on-chip
data bus transfer speed of PGC and Microblaze systems for different video frame rates. A
single THDB-D5M image sensor is used. It can operate up to 150 fps with VGA resolution.
The X-axis presents video of different fps. The Y-axis shows measured bandwidth for different
videos frame rates. To measure the bandwidth we calculate the time to transfer video from
CCU to DCU. Theoretically the PLB and the graphic bus support video of VGA quality more
than 100 fps. In practice there are on-chip bus arbitration and request grant time delays. By
using the PGC system, the results show that the system manages video for higher fps. While
the MicroBlaze based graphic system supports video up to 40 fps, with higher fps the video
starts flicking. The system uses a separate processor core that manages the data movement
of CCU and DCU. The PGC allows graphics system to operate Video Mode up to 85 fps.
The PGC resides in on-chip bus unit and has direct interconnection with CCU and DCU.
The PGC control unit controls the CCU and DCU without the intervention of processor core
which reduces the master/slave request/grant time.

5.1.2 Multi-Camera Bus Bandwidth A multi-camera graphics system can be used for
3D-graphics using geometric transformation and projection plane [19]. In this section, two
THDB-D5M image sensors are used that generate two separate, simultaneous video streams
and apply Alpha blending application that evaluate the performance of system. Each camera is
operating at VGA color resolution. The video of dual image sensors is combined into a single
stream, processed by graphics core and then displayed. The key issue of the dual-camera
system is receiving the images synchronously, in the right format and on the right bus. The
graphic system sends the configuration data to both image sensors and ensure that they are
properly configured and synchronized. Once both sensors are set up and synchronized, both
sensors begin to transmit image data. The graphic system looks for the appropriate control
characters so it recognizes the start of the frame and start of line for each sensor. The PGC
system performs it by looking for a control character and sequence of sensors commands.
Alpha blending is applied to give a translucent effect to the incoming video stream. The
application blends the color value of the consecutive pixels of image sensors of the same
position. This blending is done according to the alpha value associated with the pixel. The
alpha value represents the capacity of the given pixel. After blending, the result color value is
updated to the frame buffer of the DCU. Results show (Figure 5(b)) that PGC system handles
dual camera system and support system up to 30 fps. The MicroBlaze based dual-camera
graphics system supports videos only up to 15 fps. The PGC on-chip scheduler and decoder
update multi-camera information in status register. This allows both cameras to synchronize
without using extra clocks.

5.2 Snapshot Mode Performance
In this section the performance is measured by executing PGC and MicroBlaze systems
in Snapshot Mode. During Snapshot Mode the system reads one still image of QSXGA
resolution from CCU using Graphics Bus and writes it to Global Memory using System
Bus. The MicroBlaze based system and PGC take 22.17M and 7.07M clocks respectively to
transfer an image. The Snapshot Mode results show that the PGC system achieves 3.1x of
speed compared to MicroBlaze based system. The PGC directly controls the Graphics Bus,
System Bus, CCU and Global Memory, therefore it takes less clocks to read data from CCU



to synchronize different units, transfer data from Graphics Bus to System Bus, and write data
to Global Memory. The MicroBlaze based system uses a separate bus controller that controls
bus system and a DMA controller that transfers data from CCU to Global Memory.

5.3 Applications Performance
In this section we execute some application kernels that perform image processing. The
image is saved in Global Memory (SDRAM), the processor core reads the 4KBytes image,
performs computation and then writes it back to Global Memory. To achieve low power the
application kernels are executed by the 16-bit core on PGC system. Alternatively, a 32-bit
MicroBlaze core is also used with PGC system to get higher performance. Figure 6 shows
time (clock cycles) to process application kernels. The X and Y axis represent application
kernels and number of clock cycles, respectively. The Y-axis has logarithmic scale. Each
bar represents the application kernel’s execution time with 16/32 bit cores and memory
access time. By using the PGC system with 16-bit and 32-bit cores, the results show that
thresholding (Thresh) applications achieve 4.6x and 4.7x of speedup respectively over the
MicroBlaze graphics system. This application kernel requires single pixel element and very
few operations, therefore it achieves almost the same performance on 16-bit and 32-bit cores.
The FIR application has streaming data access pattern and perform multiplication and addition.
The PGC 16-bit and 32-bit cores achieve 3.4x and 4.7x of speedup respectively. The FFT
application kernel reads a 1D block of data, perform complex computation and writes it
back to Global Memory. This application achieves 4.4x and 4.8 of speedup. The Laplacian
application processes over 2D block of data and achieve 5.2x and 7.4x of speedup. The PGC
places access patterns on program memory at program-time and are programmed in such a
way that few operations are required for generating addresses at run-time. The MicroBlaze
based system uses multiple load/store or DMA calls to access complex patterns. The speedups
are possible because PGC is able to manage data transfers with a single descriptor. At
run-time, PGC takes descriptor from program memory and manages them, whereas the
baseline system is dependent on the processor core that feeds data transfer instructions. The
stand-alone working operation of PGC removes the overhead of processor/memory system
request/grant delay.

5.4 Power
In comparison with on-chip power in a Xilinx V5-Lx110T device, the Microblaze based
system dissipates 3.45 watts and the PGC system 2.7 watts. Results show that PGC system
consumes 30% fewer slices than the Microblaze system. While comparing on-chip power of

Fig. 6. Application Performance



Microblaze graphics system with the PGC, results show that PGC system consumes 22% of
less on-chip power.

6 Conclusion

With the increase of image resolution the graphics system demands a low power, low cost and
high performance architecture. In this paper we have suggested a Programmable Graphics
Controller (PGC) for low cost and low power graphics system. The system takes high
resolution images and supports video at higher frame rate without the support of a processor.
The PGC system provides strided, scatter/gather and tiled access pattern that eliminates
the overhead of arranging and gathering address/data. In the future, we plan to execute
some complex and high performance image processing applications which include image
recognition, image transform and image compression.

7 Acknowledgments

We thankfully acknowledge the support Microsoft Research though the BSC-Microsoft
Research Centre, the European Commission through the HiPEAC-3 Network of Excellence,
the Spanish Ministry of Education (TIN2007-60625, and CSD2007-00050), the Generalitat
de Catalunya (2009-SGR-980) and Unal Center of Education Research and Development.
References
1. Gordon E Moore et al. Cramming more components onto integrated circuits. 1965.
2. Lecturer Brian Towles et al. Memory systems and memory latency. 2000 Citeseer.
3. Anthony Rowe et al. Cmucam3: an open programmable embedded vision sensor. In International

Conferences on Intelligent Robots and Systems, 2007.
4. M Petouris et al. An fpga-based digital camera system controlled from an lcd touch panel. In

Signals, Circuits and Systems, 2009. ISSCS 2009. International Symposium on.
5. Chris Murphy et al. Low-cost stereo vision on an fpga. In Field-Programmable Custom Computing

Machines, 2007. FCCM 2007. 15th Annual IEEE Symposium.
6. Matthew A Lewis et al. A multi-camera system for bioluminescence tomography in preclinical

oncology research. Diagnostics, Multidisciplinary Digital Publishing Institute, 2013.
7. Yu Shi et al. An fpga-based smart camera for gesture recognition in hci applications. In Computer

Vision–ACCV 2007.
8. AMBA 4 AXI. http://infocenter.arm.com/help/index.jsp?topic=/com.

arm.doc.ihi0022e/index.html, 2013.
9. T. Hussain and others. Recongurable Memory Controller with Programmable Pattern Support.

HiPEAC WRC, Jan, 2011.
10. T. Hussain and others. PPMC: A Programmable Pattern based Memory Controller. In ARC 2012.
11. T. Hussain and others. PPMC : Hardware Scheduling and Memory Management support for Multi

Hardware Accelerators. In FPL 2012.
12. T. Hussain and others. APMC: Advanced Pattern based Memory Controller. In FPGA 2014.
13. IBM CoreConnect. PLB Crossbar Arbiter Core. 2001.
14. T. Hussain and others. Implementation of a Reverse Time Migration Kernel using the HCE High

Level Synthesis Tool. FPT 2012, The International Conference.
15. Xilinx University Program XUPV5-LX110T Development System. http://www.xilinx.

com/univ/xupv5-lx110t.htm.
16. Embedded Development Kit EDK 10.1i. MicroBlaze Processor Reference Guide.
17. Xilinx LogiCORE IP. Local Memory Bus (LMB), December, 2009.
18. Embedded Development KitEDK 10.1i. MicroBlaze Processor Reference Guide.
19. Richard Hartley et al. Multiple view geometry in computer vision, volume 2. Cambridge Univ

Press, 2000.


