Unal Center of
Education Research
\ and Development
www.ucerd.com
- . =

Applications & Problems

Dr. Tassadaq Hussain
Assistant Professor Riphah International University

Collaborations:
Barcelona Supercomputing Center Barcelona, Spain

UCERD Pvt Ltd Islamabad

I E E E @Microsnﬂ Research
e Centre

Applications/Problems

— Categories

— Data Access Patterns

— Parallel Execution Methods

Gathering
Intellectuals

& IEEE

Applications

® | ife Sciences
* Biomedical Applications

* Imaging Applications

Computer Systems

P Field
Vector
rrrrrrrrr Programmable

e Communication

Graphic | | (EpGAs

rrrrrrrrr

Domain

* Defense

® Earth Sciences

* Interferometric Sensors
* QOil Search

A AT
Non-Biological Sciences

Intellectuals ®

w TR

Computer Applicaiion

* Access Pattern

— Front-end Interface
* Storage
* Processing

o Analog to Digital :
Application Processing
: Front-end Memory System
Behavior System
Interface

< IEEE

v TR

e

Understand an Application

Cache or Uni- Multi- Core

Life or Earth L -
Ite or Ea Scratch-pad Application Specific

Science Application

Analog to Digital

Application

Processing

Front-end
Interface

Behavior

System

Sensors Main Memory

Antenna DRAM, GDDR, RISC

Bi-Medical Pattern-based CISC (Vector, GPU)
Camera FPGA

Display

< IEEE

High Performance Computing (HPC) '
Application

Complex and Irregular Transfer

Compute and Data Intensive

& IEEE

| o

e N\

Basic types of memory access patterns

® Regular access

data[1024] ;
for(int x=y;x<100;x=x++)
{ read=data[x];
compute(read) ;

}

Regular access pattern

> Fixed stride
> Predictable
> Parallel

data[1024] ;
for(int x=0;x<5;x=x++)
{ read=data[factorial(x)];
compute(read); }

Irregular known access pattern

® |rregular access
» Variable strides

» Known
» Predictable at compile-time

Data[1024];
addr=runtime_input();
for(int x=0;x<5;x++)
{ read=data[factorial(x)+addr];
compute(read); }

Irregular unknown independent access pattern

» Unknown
» Independent
» Dependent

Gathering
_ Intellectuals

data[100];
for(int x=0;x<100;x=x++)
{ read=data[read+x];
compute(read);

}

Irregular unknown dependent access pattern

& IEEE

Basic types of memory access

® Regular access
> Fixed stride
> Predictable
> Parallel

Irregular access
» Variable strides

> Known
» Predictable at compile-time
» Unknown

» Independent
» Dependent

S ___—q-
patterns

Kernel Description Access Pattern
Rad_Con Radian Converter converts
degree into radian
Thresholding is an application Load/Store
of image segmentation, which | Il]
Thresh takes streaming 8-bit pixel
data and generates binary
output.
FIR Finite Impulse Response
calculates the weighted sum Streaming
of the current and past inputs. | [HillEE
1D Block
Fast Fourier Transform is
FFT !_Jsed for trfans_ferrlnf_:; a ========
time-domain signal into
corresponding
frequency-domain signal. T 1 e 1) [
Column & Vector
Access
Mat__Mul Matrix Multiplication takes N N [[N P
pair of tiled data and produce =
Output tile. .
Output= Row[Vector] = ||
Column[WVector] =
X=Y=Z =
Diagonal Access
||
Smith-Waterman determines
Smith__ WV the optimal local alignments
between nucleotide or protein
sequences.
Laplacian kernel applies
Lapl discrete convolution filter that
can approximate the second
order derivatives. ————t—t——1—
T e[e ey
3D Stencil
3D-Stencil algorithm iﬂ’?
3D-Sten averages nearest neighbor ﬁi
points (size 8x9x8) in 3D. (=115 (=
g
=5

Gathering
Intellectuals

® Regular access
> Fixed stride
> Predictable
> Parallel

Irregular access
» Variable strides

> Known
» Predictable at compile-time
» Unknown

» Independent
» Dependent

\N

e .__-q-
Basic types of memory access patterns

Kernel Description Access Pattern | Regular Irregular %
% known unknown
Pointer
A compression e,
algorithm, (LT T T T
CRG hides zero in a _]I 28 72
descriptor block T it
lid Ii Padded
D:Iaamen EF{:I?'}GI‘I Ellment
Huffman is an entropy Binary Tree
coding technigue.
Allocate codes fo
Rufiman symbols, using
frequency of 25 75
occurrence for each
symbal.
n R A Linked List Buffer
n_Rem 5 55 40
The 3D-Hermite
algorithm used to
compute movement of
N-Body | bodies using the 20 40 40
newtonian gravitational
force.
0
¥\ .,l y
(K ®
< IEEE
@

Intellectuals

Compute and Data Intensive

Arithmetic Intensity
Control and Data Flow

Constants
Data set 1[n]
o Constan_’gﬁ_ ___ Data set 2[n]
A 3D-Stencil Dataset 3in]

Output[n]

& IEEE

Executing Application on Parallel Machines

Partitioning: Divide the computation to be performed and the data operated
on by the computation into small tasks. The focus here should be on
identifying tasks that can be executed in parallel.

Communication: Determine what communication needs to be carried out
among the tasks identified in the previous step.

Agglomeration or aggregation: Combine tasks and communications
identified in the first step into larger tasks. For example, if task A must be
executed before task B can be executed, it may make sense to
aggregate them into a single composite task.

Mapping: Assign the composite tasks identified in the previous step to
processes/threads. This should be done so that communication is
minimized, and each process/thread gets roughly the same amount of

@

Intellectuals

Application Understanding

nt n2
Metamathematical Representation == I_:Z_ﬂgz k(n2 +i,n2 + f (= i,y — j)

1fg rg :1.'_:3- :

1'1|:1. | 1 ——3

1 11:‘ 11I:I “U 11-01 119 1.f9 1"9 g 1 It
18 118 18| (1114 1/ 1-;'9-1,'5: o - :
A7 117108 1 T T — —— [.

Working Operation il 110_110110';09 1D’H.1m.11n1_|l i

127 127 130 130 1,3!.1 108 | 108 108

400 100| 93 | ¥ &85 e e L
T lanal 108 [108[112]12

1 int img[IMGY+2][IMGX+2];

int FiTLt[IMGY J[IMGX];

128 100

3 1nt nZ = nl2;

a4 for(int x=l;x <= IMGK; x++) |

5 for(imt y=1; y <= IMGY ; y++) {

@ int newV=0;

7 for{int i= —n2; i<= n2; i+4+)

8 for(int j= —n2; j<= n2; j++)

] newVl += dmg[¥y — J][» — i] %= k[n2 + jl[n2 + i];
10 Filt[y—1][x—1] = newV;

1 }

Computational Intensity :

Floating Point Operations/Second 1 Data Bytes/Second

_ Intellectuals ®

Decomposing Application

Intellectuals

!

IMGX

ey e e
IXIXIDAITX X

Xl
[)

w‘f

0
XD

a0

i o

o

e

T
%0

2

P R

vOSOSOSOG OIS
Ry >< >< T R T R ,

Pl s W [-

IMGY

~

Decomposition

Data flow

$IEEE

Types of Decomposition

> Functional Decomposition
* Task Parallelism
* Divide & Conquer

> Domain Decomposition
* Geometric
* Recursive Data

> Data Flow Decomposition
* Pipelining
* Event Based

Gathering
Intellectuals

< IEEE

Computer Program Structure

Globally Parallel, Locally Sequential
(GPLS):

GPLS means that the application is able to perform muiltiple
tasks concurrently, with each task running sequentially.

Globally Sequential, Locally Parallel
(GSLP):
GSLP means that the application executes as a sequential

program, with individual parts of it running in parallel
when requested.

& IEEE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

