
Applications & Problems

Dr. Tassadaq Hussain
Assistant Professor Riphah International University

Collaborations:
Barcelona Supercomputing Center Barcelona, Spain

UCERD Pvt Ltd IslamabadUCERD Pvt Ltd Islamabad

2

 Applications/Problems

– Categories

– Data Access Patterns

– Parallel Execution Methods

3

Applications

Life Sciences

• Biomedical Applications

• Imaging Applications

• Communication

• Defense

Earth Sciences

• Interferometric Sensors

• Oil Search

4

Computer Application

 Access Pattern
– Front-end Interface

 Storage
 Processing

Application
Behavior

Analog to Digital
Front-end
Interface

Memory System
Processing

System

5

Understand an Application

Application
Behavior

Analog to Digital
Front-end
Interface

Memory System
Processing

System

Life or Earth
Science Application

Sensors
Antenna
Bi-Medical
Camera
Display

Cache or
Scratch-pad

Main Memory
DRAM, GDDR,
Pattern-based

Uni- Multi- Core
Application Specific

RISC
CISC (Vector, GPU)
FPGA

6

7

High Performance Computing (HPC)
Application

Complex and Irregular Transfer

Compute and Data Intensive

8

Basic types of memory access patterns

 Regular access
 Fixed stride
 Predictable
 Parallel

 Irregular access
 Variable strides
 Known
» Predictable at compile-time

 Unknown
» Independent
» Dependent

Regular access pattern

 Irregular known access pattern

Irregular unknown independent access pattern

Irregular unknown dependent access pattern

data[1024];
 for(int x=y;x<100;x=x++)
 { read=data[x];
 compute(read);
 }

 data[1024];
 for(int x=0;x<5;x=x++)
 { read=data[factorial(x)];
 compute(read); }

 data[100];
 for(int x=0;x<100;x=x++)
 { read=data[read+x];
 compute(read);
 }

 Data[1024];
 addr=runtime_input();
 for(int x=0;x<5;x++)
 { read=data[factorial(x)+addr];

 compute(read); }

9

Basic types of memory access patterns

 Regular access
 Fixed stride
 Predictable
 Parallel

 Irregular access
 Variable strides
 Known
» Predictable at compile-time

 Unknown
» Independent
» Dependent

Regular access pattern

 Irregular known access pattern

Irregular unknown independent access pattern

Irregular unknown dependent access pattern

data[1024];
 for(int x=y;x<100;x=x++)
 { read=data[x];
 compute(read);
 }

 data[1024];
 for(int x=0;x<5;x=x++)
 { read=data[factorial(x)];
 compute(read); }

 data[100];
 for(int x=0;x<100;x=x++)
 { read=data[read+x];
 compute(read);
 }

 Data[1024];
 addr=runtime_input();
 for(int x=0;x<5;x++)
 { read=data[factorial(x)+addr];

 compute(read); }

10

Basic types of memory access patterns

 Regular access
 Fixed stride
 Predictable
 Parallel

 Irregular access
 Variable strides
 Known
» Predictable at compile-time

 Unknown
» Independent
» Dependent

11

Compute and Data Intensive

Arithmetic Intensity

Control and Data Flow

12

Executing Application on Parallel Machines

Partitioning: Divide the computation to be performed and the data operated
on by the computation into small tasks. The focus here should be on
identifying tasks that can be executed in parallel.

Communication: Determine what communication needs to be carried out
among the tasks identified in the previous step.

Agglomeration or aggregation: Combine tasks and communications
identified in the first step into larger tasks. For example, if task A must be
executed before task B can be executed, it may make sense to
aggregate them into a single composite task.

Mapping: Assign the composite tasks identified in the previous step to
processes/threads. This should be done so that communication is
minimized, and each process/thread gets roughly the same amount of
work.

13

Application Understanding

Metamathematical Representation

Working Operation

Computational Intensity
Floating PointOperations /Second❑Data Bytes /Second

14

Decomposing Application

15

Decomposition

16

Types of Decomposition

 Functional Decomposition
 Task Parallelism
 Divide & Conquer

 Domain Decomposition
 Geometric
 Recursive Data

 Data Flow Decomposition
 Pipelining
 Event Based

17

Computer Program Structure

Globally Parallel, Locally Sequential
(GPLS):

GPLS means that the application is able to perform multiple
tasks concurrently, with each task running sequentially.

Globally Sequential, Locally Parallel
(GSLP):

GSLP means that the application executes as a sequential
program, with individual parts of it running in parallel
when requested.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

