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Information Future Trend
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Moore’s Law: Transistor Count
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[1] G. E. Moore, “Cramming more components onto inte

rated circuits,” Electronics, vol. 38, no. 8, April 1965.
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Performance Improvement

Computational capacity of a human brain
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It is estimated that sometime between the years 2025 and 2050, a personal
computers will exceed the calculation power of a human brain.
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120 Years of Moore’s Law
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http://home.fnal.gov/%7Ecarrigan/pillars/Accelerators.htm
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Importance of HPC System

Information

. . Big Dat
» The information data volume S
doubles after every 18 months. I
» The performance of digital High Performance
system get improved after Digital System
every 18 months. I
» High Performance, Low Cost

and Low Power Computer

Systems Advanced Decisions
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Relevance to industry and academia

» High performance computing is the need
of the day.

» Equally important for high tech industry.
» Optimum resource utilization.

> Less time to solve complex compute
iIntensive problems.
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Challenges

» Restrictions on High Performance Target Technologies.

> Limited availability of High Performance Advance
hardware.

» Even having high performance hardware does not
guaranty its optimum usage.

» High end expertise are required to utilize high
performance hardware/software.

& IEEE
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Generic Proposal: High Performance
Supercomputing

Parallel Programming Model

4 N 2\ A B\ & )
High Network and
Engineering & Parallel Performance System
\ Sciences - KProgramming/ \ Computing - \ Operators -

High performance system architectures for Artificial
. Intelligence, Embedded Real-time Systems etc.
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Objectives

® Executes Engineering and Sciences Applications
» Compute and Data Intensive
» Complex and irregular data structures
> e.g. Artificial Intelligence, Fluid Dynamics, Structural Analysis, 3D/4D Imaging.

® Handle Information in Big Data
» Support local memory, main memory and external memory systems
» Perform memory read/write operations in parallel with processing unit

® Multiple Heterogeneous Cores
» RISC (SSP), vector processor (VP) and application specific
hardware accelerator (ASHA)

® Provides Programming support
» Provide standard C/C++ parallel programming languages
for real-time and standalone applications.
.. » Support Tools for Visual Analysis, Modeling and Simulations e.g Ansys HPC.

1N
Gathering I I I I
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Problem Formulation

Proposal

Supercomputing System
High Performance Applications
Supercomputer Architectures
Conclusion

Hands on Experience
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Processor System Architecture

> Hardware
—  Processor
—  Bus
- Memory
—  Peripherals

&IEEE




Processor

A simple processor takes a single instruction and generate
results in a given time called instruction cycles.

An instruction includes two values (operands) and an

arithmetic or a logic operation (operator).
Values (operands) can be from memory

or peripherals.

Gathering
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Important Parameters of a Processor

Clock

Data Bus

Instruction Bus
Instructions Per Cycles
Pipeline Stage
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Basic introduction of Microprocessor

A B
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function
ral
C
Arithmetic
Logic Unit
-<—> Control Unit
'
Input/Output
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Processor Architectures \f\
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Multi-core Processor

Core 1 Core 2 Core 3 Core 4
register file register file register file register file
/\]E% ALU B ALU a ALU @ /| ALU

10 10 10 10
bus interface <:::>
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Types of MIMD Architecture

Centralized shared-memory architectures or
symmetric shared-memory multiprocrssors

(SMP) or uniform memory access (UMA)

architectures.

Distributed-memory multiprocessors.

< IEEE
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SMP: Shared Memory Processor

Small number of similar processors (at most a

few dozen).
Each processor has a large cache.

A centralized memory (multiple banks) is

shared through a memory bus.

Each memory location has identical access

time from each processor.
| ][] [

Cache

Memory ‘ I/O System \’
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SMP

Processo Processo Processo Processo
Cache Cache Cache Cache
Memory I/O System
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Distributed Memory

Larger processor count.

Memory is physically distributed among the
processors for better bandwidth.

Connected through high-speed interconnection
e.g. switches.

& IEEE
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Distributed Memory

The bandwidth for the local memory is high
and the latency is low.

But access to data present in the local memory
of some other processor is complex and of high
latency.

< IEEE
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Distributed Shared Memory Architecture

Large-scale multiprocessors have physically
distributed memory with the processors.

There are essentially two different models of
memory architectures and the corresponding

models of communication.

< IEEE




DSM Architecture

e Memory is distributed with different
processors to support higher bandwidth
demand of larger number of processors.

e Any processor can access a location of
physically distributed memory (with proper
access permission).

e This is called distributed shared-memory
architecture (DSM) also known as NUMA

(nonuniform memory access).

& IEEE




Available Computer Architectures

There are currently two trends in utilizing the increased transistor
count afforded by miniaturization and advancements in
semiconductor materials:

> Increase the on-chip core count,
> Combined with augmented specialized SIMD instruction sets (e.g., SSE and
its subsequent versions, MMX, AESNI, etc.) and larger caches.
> This is best exemplified by Intel’s x86 line of CPUs and the Intel Xeon Phi
COpProcessor.

>~ Combine heterogeneous cores in the same package,
> Typically CPU and GPU ones, each optimized for a different type of task.
> This is best exemplified by AMD'’s line of Accelerated Processing Unit (APU)
chips. Intel is also offering OpenCL-based computing on its line of CPUs with
integrated graphics chips.

sisD [MisD  [siMp| - [MiMD) |
Y
jShared h:emnry] [Distributed Memory
| |
¥

[ Master-Worker J SMP .

Parallel Machines| 1
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Reconfigurable Accelerators

Intel Xeon processor Local Local
with front-side memory memory
bus architecture
Second
FPGA FPGA

HPC
Reconfigurable
Architecture

FBDIMM
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CPU: Intel Processor

CPUs employ large on-chip
(and sometimes multiple)
memory caches, few

Intel Core i7-5960X

Queue, Uncore & [/O

complex (e.g., pipelined) Core Core
arithmetic and logical - -
processing units (ALUs), and Shared L3 Cache

complex instruction decoding Core Core
and prediction hardware to Core Core

avoid stalling while waiting
for data to arrive from the
main memory.

Memory Controller

®

Intellectuals
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* A Super-scalar Architecture

* Xeon Phi comes equipped upto 72 x86 cores that are heavily
customized Pentium cores.

* The customizations include the ability to handle four threads at
the same time.

* The coherency is managed by distributed tag directories (TDs)

Intellectuals ®




Intel Super Scalar: A Many Core Architecture

Processor
Mumber

Intel® Xeon Phi™
Processor 7250
(16GB, 1.40 GHz,
68 core)

Intel® Xeon Phi™
Processor 7230
(16GB, 1.30 GHz,
54 core)

Intel® Xeon Phi™
Processor 7270
(16GB, 1.30 GHz,
64 core)

Intel® Xeon Phi™
Processor 7290
(16GB, 1.50 GHz,
72 core)

Intel® Xeon Phi™
Processor 7290F
[16GB, 1.50 GHz,
72 core)

Intel® Xeon Phi™
Processor 7250F
(16GB, 1.40 GHz,
68 core)

Intel® Xeon Phi™
Processor 7230F
(16GB, 1.30 GHz,
64 core)

Intel® Xeon Phi™
Processor 7210F
(16GB, 1.30 GHz,

Availability

Mow

Mow

Mow

Sept. 2016

Oct. 2076

Oct. 2016

Oct. 2016

Oct 2016

# of Cores/f#
of Threads

68/272

64/256

64/256

72/288

T2f/288

68/272

64/256

64/256

Clock
Speed

1.4 GH=z

1.3 GHz

1.3 GHz

1.5 GH=z

1.5 GHz

1.4 GHz

1.3 GH=z

1.3 GHz

Max TDPfPower

215 W

215w

275 W

245 W

260 W

230w

230 W

230 W
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Memory Types

DDRA4-2400

DDR4-2400

DDR4-2133

DDR4-2400

DDR4-2400

DDR4-2400

DDRA4-2400

DDR4-2133

Fabric

L2 Cache

34 MB
32 MB
32 MB
36 MB
36 MB
34 MB
32 MB

32 MB

< IEEE



Graphics Processing Unit (GPU) and CPU

* GPUs have been developed as a means of processing
massive amount of graphics data very quickly, before they
are placed in the card’s display buffer.

* Their design envelope dictated a layout that departed from
the one traditionally used by conventional CPUs.

* GPU uses small on-chip caches with a big collection of
simple ALUs capable of parallel operation, since data reuse
is typically small for graphics processing and programs are
relatively simple. In order to feed the multiple cores on a
GPU, designers also dedicated very wide, fast memory
buses for fetching data from the GPU’s main memory.

& IEEE




Nvidia Graphics Processing Unit (GPU)

> SM, SMM SMX (Streaming Multiprocessors): Single SMX
contains 192 cores executes in SIMD fashion
> Each SMX can run its own program.

> CUDA and OpenACC
Programming Models

Nvidia Kepler GK110

Memory Controllers

SMX#0 ROP Partitions SMX#1
Misc 1/0

L] L ¥ E

11111 |2
SMX#2 FolfolEelEy SMX#3

g |8 |8 |5
SMX#4 s |8 |8 |3 SMXi#5

Command
Setup Pipeline #0 Processor Setup Pipeline #5
SMX#6 SMX#7 SMX#8
SMX#9 SMX#10 SMX#11
SMX#12 SMX#13 SMX#14
|
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GPU SMX Internal Architecture

| Register file (65536 32 bit) ]
J A 4 J 4 A L 4 L l J 4 4 4 4 J 4 J A l
Core |Core | Core | DP Unit | Core | Core | Core | DP Unit | LD /ST | SFU | Core | Core | Core | DP Unit | Core | Core | Core | DP Unit | LD /ST | SFU
Core | Core | Core | DP Unit | Core [ Core [ Core | DP Unit [LD/ST | SFU | Core | Core | Core | DP Unit | Core |Core | Core | DP Unit | LD /ST | SFU
Core | Core | Core | DP Unit | Core | Core | Core | DP Unit | LD/ST | SFU | Core |Core | Core | DP Unit | Core | Core | Core | DP Unit | LD /ST | SFU |
Core | Core | Core | DP Unit | Core | Core [Core | DP Unit | LD /ST | SFU | Core | Core | Core | DP Unit | Core | Core | Core | DP Unit |LD /ST | SFU
Core |Core | Core | DP Unit | Core | Core |Core | DP Unit | LD /ST | SFU | Core | Core | Core | DP Unit | Core | Core | Core | DP Unit | LD /ST | SFU
Core |Core | Core | DP Unit | Core | Core |Core | DP Unit | LD /ST | SFU | Core | Core | Core | DP Unit [ Core |Core | Core | DP Unit | LD /ST | SFU
Core | Core | Core | DP Unit | Core | Core | Core | DP Unit | LD /ST SFU | Core | Core | Core | DP Unit | Core | Core | Core | DP Unit LD/ST SFU |
Core |Core | Core | DP Unit | Core | Core |Core | DP Unit | LD /ST | SFU | Core | Core | Core | DP Unit | Core | Core | Core | DP Unit |LD /ST | SFU
Core |Core | Core | DP Unit | Core | Core [Core | DP Unit |[LD /ST SFU | Core | Core | Core | DP Unit | Core | Core | Core | DP Unit LD /ST SFU |
Core | Core | Core | DP Unit | Core | Core [ Core | DP Unit | LD /ST | SFU | Core | Core | Core | DP Unit | Core | Core | Core | DP Unit | LD /ST | SFU
Core | Core | Core | DP Unit | Core | Core [ Core | DP Unit | LD /ST | SFU | Core | Core | Core | DP Unit | Core | Core | Core | DP Unit | LD /ST | SFU
Core | Core | Core | DP Unit | Core | Core [Core | DP Unit | LD /ST | SFU | Core | Core | Core | DP Unit [ Core | Core | Core | DP Unit | LD /ST | SFU
Core |Core | Core | DP Unit | Core | Core |Core | DP Unit | LD/ST | SFU | Core | Core | Core | DP Unit | Core | Core | Core | DP Unit | LD/ST | SFU
Core | Core | Core | DP Unit | Core | Core |Core | DP Unit | LD /ST | SFU | Core | Core | Core | DP Unit [ Core |Core | Core [ DP Unit | LD /ST |SFU
Core |Core | Core | DP Unit | Core | Core | Core | DP Unit | LD /ST | SFU | Core | Core | Core | DP Unit [ Core | Core | Core | DP Unit | LD /ST | SFUJ
Core |Core | Core | DP Unit | Core | Core | Core | DP Unit | LD /ST | SFU | Core | Core | Core | DP Unit [ Core | Core | Core | DP Unit | LD /ST | SFUJ
Interconnect Network

64 KB Shared Memory/L1 Cache

48 KB Read-Only Data Cache

192 Core : single-precision cores

64 DP Unit : double -precision cores
32 LD/ST : load/store units

32 S}\FU : Special Function Units

Intellectuals ®



High Performance Accelerators

NVIDIA Tesla Family Specification Comparison

e

_ Tesla P100 Tesla K80 Tesla K40 Tesla M40

Stream Processors

Core Clock

Boost Clock(s)
Memory Clock
Memory Bus Width

Memory
Bandwidth

VRAM
Half Precision
Single Precision

Double Precision

GPU

Transistor Count
TDP

Cooling

1328MHz
1480MHz
1.4Gbps HBM2
4096-bit

T20GB/sec

16GB
21.2 TFLOPS
10.6 TFLOPS

53 TFLOPS
(1/2 rate)

GP100
(610mm2)

15.3B
300w
N/A

2 x 2496
562MHz=
875MHz
S5Gbps GDDRS
2 x 384-bit

2 x 240GB/fsec

2x12GB
8.74 TFLOPS
8.74 TFLOPS

291 TFLOPS
(1/3 rate)

GK210

2 x 7.1B(?)

300w

Passive

2880

TASMH=z

810MHz, 87SMHz

6Gbps GDDRS

384-bit

288GB/sec

12GB
4.29 TFLOPS
129 TFLOPS

1.43 TFLOPS
(1/3 rate)

GK110B

7.1B
235w

Active/Passive

3072
948MHz
11174MHz
6Gbps GDDRS
384-bit

288GB/sec

12GB
6.8 TFLOPS
6.8 TFLOPS

213 GFLOPS
(1/32 rate)

GM200

8B
250w

Passive

& IEEE



AMD GPU

* AMD’s APU chips implement the Heterogeneous System
Architecture (HSA).

* The significant of AMD GPU is the unification of the memory
spaces of the CPU and GPU cores. This means that there is
no communication overhead associated with assigning

workload to the GPU cores, nor any delay in getting the results
back.

* This also removes one of the major hassles in GPU
programming, which is the explicit (or implicit, based on the
middleware available) data transfers that need to take place.

). Unified, Coherent
' Main Memory

A" A II--E



* The HSA architecture identifies two core types:

* The Latency Compute Unit (LCU), which is a generalization of
a CPU. ALCU supports both its native CPU instruction set and
the HSA intermediate language (HSAIL) instruction set.

* The Throughput Compute Unit (TCU), which is a generalization
of a GPU. ATCU supports only the HSAIL instruction set.
TCUs target efficient parallel execution.

Unified, Coherent
Main Memory

S,
2005
i§
s é
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Power PC

* Master Core: 64-bit PowerPC core also called the Power
Processing Element.

* Worker Core: Synergistic Processing Element SPE having
128-bit vector processors.

* Own SIMD instruction set.

[Local Store] [Local Store] [Local Store] [Local Store]

[ Main Memory ]

[Lucal Store] [Locai Store] [Local. Sture] [Local Store]
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Basic Introduction of Supercomputing

—— N
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Operating System

Wireless Router
L Switch } 2 {OHCE/NAT)
A

v v v

Worker 0 Worker 1 Worker n \ /
[Multi-Processor Multi-Processor Multi-ProcessoJ
FPGA FPGA FPGA
C GPU GPU GPU ]
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Basic Introduction of Supercomputing

—— N
S— /
I e

Operating System

Wireless Router
L Switch } 2 {OHCE/NAT)
A

v v v

Worker 0 Worker 1 Worker n \ /
Multi-Processor Multi-Processor Multi-Processor
k FPGA FPGA FPGA j
C GPU GPU GPU ]
Parallel Task | Parallel Task Il Parallel Task 111

——~ - - - - -
Master Thread

Parallel Task Parallel Task 11 Parallel Task 111
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Basic Introduction of Supercomputing
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Operating System

Wireless Router
L Switch } . (DHCP/NAT)

Cluster 0 7 %
Worker 0 Worker 1 Worker n \ /
Multi-Processor Multi-Processor Multi-Processor
L FPGA FPGA FPGA j
C GPU GPU GPU ]
Parallel Task | Parallel Task Il Parallel Task 111
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Master Thread

Parallel Task Parallel Task 11 Parallel Task 111
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Basic Introduction of Supercomputing
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Operating System

Master System

Wireless Router
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Master Thread

Parallel Task

L Switch } . (DHCP/NAT)
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Multi-Processor Multi-Processor Multi-Processor
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C GPU GPU GPU ]
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Basic Introduction of Supercomputing

® Performance

® Programmability

® Portability
® Scalability

® Accessibility

® Power

® Cost

/Me“ -
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Master System
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Cluster 0 Cluster 1 Cluster 2
Worker 0 Worker 1 Worker n
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Supercomputing System

> Scientist Community

» Hardware Expert
> Tool Developer
» Programmer

» System Manager

Parallel Programming Model

Programming Tool Developers

Scientists

Sciences &

)

Programmers

Parallel

\Engineeringj

Hardware
Experts

High
Performance

\Programminy

Gathering
Intellectuals

System
Manager

Network and
System

\Computing/

\ Operators )
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Scientist Community

Life Science
— e.g Medicine, Biology etc.
Earth Science
— e.g. Environment Studies etc.
Engineering
— e.g. Aerospace, Automotive industry, Biomechanics

— and biomedical research etc.
Targeted Algorithms

— Compute Intensive

— Data Intensive

* Linear, Differential Equatlons and Filters for Quick
Analysis, QG and Decision.

Gathering ‘ I I I I
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for (y = stencil; y < NY — stencil; y+ +)
for (z = stencil; © < NX — stencil; x4+ +)
for {z = stencil; z < NZ — stencil; z + +)

Scientist Community

Py(x,y,z) = wp [Polr — Ly, z)+ Pa(z + 1y, 2)
y 0 z) { y

+ Z wi [Pa(z,y —1,2) + Po(z,y+1,2))
{

Life Science
+Zuf Po(z,y,z = 1)+ Po(z,y. 2+ )] + " Pa(z, y, 2))

— e.g Medicine, Biology etc. AV (e.02) X P + (2 % Pa(eg.2)) = Prlesge)
Earth Science 3D Differential Equation

— e.g. Environment Studies etc.
Engineering

— e.g. Aerospace, Automotive industry, Biomechanics

— and biomedical research etc.

Targeted Algorithms

— Compute Intensive

— Data Intensive

* Linear, Differential Equatlons and Filters for Quick
Analysis, &8 and Decision.

Intellectuals @
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for (y = stencil; y < NY — stencil; y+ +)
for (z = stencil; © < NX — stencil; x4+ +)

for (z = stencil; z < NZ — stencil; z + +)

Scientist Community

Py, y,z) = Z w] [Po(x —1,y,2) + Pa(z + Ly, 2)]
I

+ Z wi [Pa(z,y —1,2) + Po(z,y+1,2))
{

Life Science
+Z wp [Pa(z,y,z — 1) + Pa(z,y, 2 + 1)) + ° P2z, y, 2))
— e.g Medicine, Biology etc. *

+H(V(w,y,2) x dt)* + (2 x Py(x,y,2)) — Pi(x,9y,2)
Earth Science 3D Differential Equation
— e.g. Environment Studies etc.
Engineering
— e.g. Aerospace, Automotive industry, Biomechanics

— and biomedical research etc.

Targeted Algorithms

— Compute Intensive

— Data Intensive

* Linear, Differential Equations and Filters for Quick
Analysis, QKaaratiaaennd Decision.
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Hardware Expert

» SISD

2 CPU (RISC)
* Intel, AMD, ARM

» SIMD

= GPU - Vector Processor
* Nvidia, AMD, Intel

> MIMD
> FPGA (HDL, HLS)

* Xilinx, Altera

= Multi-Core (MTMD)

& IEEE



Hardware Expert

Wireless Router
(DHCP/NAT)

» SISD

e

9 CPU (RlSC) Sharéd Memory
* Intel, AMD, ARM

» SIMD

= GPU - Vector Processor
* Nvidia, AMD, Intel

» MIMD
= FPGA (HDL, HLS)

* Xilinx, Altera

= Multi-Core (MTMD)

Gathering
Intellectuals
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Performance Measurement

FLOPS = Floating Point Operation Per Second

KFLOPS = 10°
= One Thousand Computation Per Second

=12.00 * 1212.222 * 21212 + 232323 .....

MFLOPS=10° Million Computation Per Second
GFLOPS= 10° Billion

TFLOPS= 10'? Trillion

PFLOPS= 10" Quadrillion

EFLOPS= 10™ Quintillion

ZFLOPS = 102" Sextillion

& IEEE




Tool Developer

» Software solutions for hardware architectures
and application requirements.

» Operating System supports, in a scalable
manner, hundreds of heterogeneous processor
cores.

»  Parallel Programming Models and Software
Packages.

Intellectuals ®
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Tool Developer: Programming Models

» The applications can target SISD, SIMD, and MIMD
architectures, executing the sequential parts on the SISD
and compute intensive parts of the SIMD or MIMD cores.

» Supercomputing system architecture requires a practical
programming model that facilitates parallel implementation
and supports proper management of data delivery to the
processing nodes.

» The demand for supporting joint CPU-GPU-FPGA
execution is reflected in more recent programming models
such as OpenCL, OpenACC, and C++ AMP.

& IEEE




Programmers

=> Sequential application program and converts into parallel
program.

=> Understand Algorithm/Application data access, data
structure, data dependencies and CFG.

for (y = stencil; y < NY — stencil; y+ +)
for (x = stencil; © < NX — stencil; =+ +)
for (z = stencil; z < NZ — stencil; z + +)

Ps(x,y, z) = Z wi [Pa(z — 1y, 2) + Pa(x + 1y, 2)]
I
-I-Z wi [Py(z,y —1,2) + Po(z,y + 1, 2)]
!

+ Z wy Po(r,y,z— 1)+ Pa(z,y, 2+ 1)] + " Pa(,y, 2))
I
+H(V(z,y,2) x dt)* + (2 x Pylx,y.2)) — Pi(x,y. 2)

Mathematical Model

Intellectuals ®




Programmers

=> Sequential application program and converts into parallel
program.

=> Understand Algorithm/Application data access, data
structure, data dependencies and CFG.
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Programmers

=> Sequential application program and converts into parallel
program.

=> Understand Algorithm/Application data access, data
structure, data dependencies and CFG.

Hdefine WX 64
Hdefine MY G4
Hdefine ML G4

f[or ( k¥ = Stencil ; k < MY — Stencil E++ )

f[or ( j = Stemncil ; j =< MZ — Stencil j++ )

f[or ( i = Stemncil ; i < MX — Stencil i++ )

{

iter = kx(MX*xMZ) + (j*=MX) + 1i;

tmp =

Y1#(P2_ linear [i+j*iter_j+(k—1)*iter_k| + P2_linear [it+j*iter_j+(k+1l)xiter_k]|) +

Y2*(P2_linear [it+j*iter_j+(k—2)*iter_k]| + P2_linear [it+j*iter_j+(k+2)*xiter_k]) —+

¥Y3%(P2_linear [i+j*iter_j+(k—3)*xiter_k| + P2_linear [it+j*iter_j+(k+3)*xiter_k]|) +

Y4+ (P2_linear [it+j*iter_j+(k—4)*iter_k| + P2_linear [it+j*iter_j+(k+4d)*xiter_k]|) +

c00 * P2_linear [iter| +

X4*(P2_linear [i+(j—4)*iter_jtk=*=iter_k]| + P2_linear [i+(j+4)*xiter_jtk=iter_k]|) +

X3*(P2_linear [i+(j—3)*iter_jtk*iter_k| + P2_linear [i+(j+3)*iter_jtk=*iter_k]|) —+

X2*(P2_linear [i+(j—2)*iter_jt+k*iter_k]| + P2_linear [i+(j+2)*iter_jtk=*iter_k]|) —+

X1#(P2_linear [i+(j—1)*iter_jt+k*iter_k| + P2_linear [i+(j+1l)*iter_jtk*+iter_k]|) +

Z4a%(P2_linear [(i—4)+j*iter_jt+k*iter_k| + P2_linear |[(i+4d)+j*iter_jtk*iter_k]|) +

Z3#(P2_linear [(i—3)+j*iter_jt+k*iter_k| + P2_linear |[(i+3)+j*iter_jtk*xiter_k]|) +

Z2*(P2_linear [(i—2)+j*iter_jtk*iter_k| + P2_linear [(i+2)+j*iter_jtk=*iter_k]|) —+
+ 1)

Z1*(P2_linear [(i—1)+j*iter_jt+k*iter_k| P2_linear [(i+1)+j*iter_jtk*iter_k]|) ;
PS_linear'iter] = tmp EE

} ' ; C/C++ Program



System Manager

Following teams and experts are required to deal
and manage the HPC system.

» Network Configuration
» Power Management

» Software Installation

» Hardware Maintenances

& IEEE




* Problem Statement

* HPC System

* Supercomputing System

* High Performance Applications
* Supercomputer Design

* Conclusion

Hands on Experience
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HPC Applications

* Compute Intensive
* Data Intensive
* Complex

* Simulation
* Analysis
* Modeling
* Artificial Intelligence

& IEEE



An HPC Simulation tool for Scientists and
Engineers

Gathering
Intellectuals
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Problem Statement

HPC System

Supercomputing System

High Performance Applications
Supercomputer Design
Conclusion

Hands on Experience
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Supercomputer Architectures and Artificial
Intelligence Frameworks

* Supercomputer Architectures

 CPU based
 CPU-GPU based
* Embedded CPU-GPU-FPGA based

* Software and Package Installation
* Supercomputer configuration

* Application programming models
* Deep Learning Frameworks

& IEEE




CPU Based

MareNostrum Il 1.1 PetaFLOPS @ 1,015 kW

37 iDataPlex compute racks.

Each one composed of:

— 84 IBM dx360 M4 compute nodes
— 2x E5-2670 SandyBridge-EP 2.6GHz cache 20MB 8-core
— 500GB 7200 rpm SATA Il local HDD

— 4 Mellanox 36-port Managed FDR10 IB Switches

— 2 BNT RackSwitch G8052F (Management Network)
— 2 BNT RackSwitch G8052F (GPFS Network)

— 4 Power Distribution Units
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https://www.bsc.es/marenostrum-support-services/marenostrum-system-
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Bottom-up Design Approach

2% CFF 900W Redundant N+N

IMMv2 leverages current iMMv2 firmware
far thermal algarithmithermal profile and
FAM control

One 3.5" SATA drive

IDPLX
2U Chassis

Dual-port
QSFP FDR1O
IB Mezz card
in each node

https://www.bsc.es/mg

| -services/marenostrum-system- @ I E E E
architecture/compute- N P ®




Bottom-up Design Approach

Front of Chassis

Space for two 1U nodes or trays

2% CFF 900W Redundant N+N

IMMv2 leverages current iMMv2 firmware
far thermal algarithmithermal profile and
FAM control

One 3.5" SATA drive

IDPLX
2U Chassis

Dual-port
QSFP FDR1O
IB Mezz card
in each node

https://www.bsc.es/mdgss -services/marenostrum-system- I E E E
architecture/compute- \\ Gathering <>®



Bottom-up Design Approach

Front of Chassis

Space for two 1U nodes or trays

2% CFF 900W Redundant N+N

IMMv2 leverages current iMMv2 firmware
far thermal algarithmithermal profile and
FAM control

One 3.5" SATA drive

Front ZUi%T'lI::sis
Dual-port
QSFP FDR10O
IB Mezz card
in each node
https://www.bsc.es/mJR -services/marenostrum-system- @ IE E E
architecture/compute- . 4




Bottom-up Design Approach

Front of Chassis
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Features Comparison: CPU based

Higher is Better

Programmability Portability

Scalability Performance

m CPU




CPU-GPU based

MinoTauro — Peak Performance: 250.94 TFlops

39 bullx R421-E4 servers, each server with:

— 2 Intel Xeon E5-2630 v3 (Haswell) 8-core processors, (each core at 2.4
GHz,and with 20 MB L3 cache)

— 2 K80 NVIDIA GPU Cards

— 128 GB of Main memory, distributed in 8 DIMMSs of 16 GB — DDR4 @ 2133
MHz — ECC SDRAM

2x CFF 900W Redundant N+h

— 120 GB SSD (Solid State Disk) as local storage 4 /

— 1 PCle 3.0 x8 8GT/s, Mellanox ConnectX N,
— 4 Gigabit Ethernet ports. ' S Sad

Front

QSFP FDR1O
IB Mezz card
in each node

Gathering
Intellectuals



Features Comparison

Higher is Better

Programmability Portability Scalability Performance .




g L ——] T
Embedded CPU-GPU-FPGA based

ARM Multi-Core, Parallela
Peak-performance 100 Giga FLOPS to 1.0 Tera FLOPS

V
Core‘O Core‘O Core‘o Core_O Main Memory
64bit 64bit 64bit 64bit

Snoop Control Unit
DDR3
Controller
L2 Cache
-

~
DSP | DSP | DSP | DSP | DSP | DSP | DSP | DSP Data
core| core | core| core |core|core | core| core Acquisition
7 6 5 4 3 2 1 0 System
N .

; f
64bit

AXI Bus

Scratchpad
FPGA @‘_ —D Memory

Single Board HPC Computer
(@)
I

gl




Features Comparison

Higher is Better Lower is Better

B Embedded

Programmability Portability Scalability Performance




Comparison

Higher is Better Lower is Better
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Supercomputer Hardware

<S—
= T
* Master Node ome ] Meser syt
— Intel Xeon Core-17 CPU Operating System , o
— Control and communicate, divide tasks | Sl }—” .
among compute-nodes

N

* Compute-nodes
— Multiple CPUs, GPUs, FPGAs
— Execute compute task of an application

* Ethernet Switch

— Master and Compute-nodes connected
through Ethernet cable or Infiniband cable

Intellectuals ®
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Software and Packages
Installation

* Operating System
— Linux based OS installed on master as well compute-nodes
— Resource management
— Scheduling of tasks running on compute nodes

— Load and balancing
— I/Os

* SSH Server

— Install SSH server(secure shell) on master node as well compute nodes
— It is a protocol used to securely log onto remote systems using TCP/UDP

— Distribute SSH keys on all compute nodes to connect with master with out using password

* NFS (Network File System)

— Install NFS server on master and NFS client on compute nodes
— NFS i1s using to run a parallel program across the compute nodes

— NFS operate using TCP/UDP internet protocols

Gathering I I I I
Intellectuals ®




Configuration

All nodes are assigned an IP address

[P addresses are assigned using DHCP with static IP configuration

Together with a DNS server, DDNS service 1s also enable to allow
dynamic host name resolution for all compute nodes

* Example
— 192.168.1.0/24 subnet
— Specific IP addresses with

Subnet 192.168.1.0  Netmask 255.255.255.0
IP range 192.168.1.1 to 192.168.1.255

. . . IP Range Purpose
1n subnet are summarize in Table
- 192.168.1.1 Gateway
ggrésf:i?‘s“x SWilChJ‘ROIHCI‘ ;(})esrs:efisnux
ACITTR T 192.168.1.10 Switch
ﬁ 192.168.1.99 Master node
192.168.1.100 to Reserved for compute nodes
192.168.1.200

sunserver
OS : Solaris
Cores : 16

IP: 192.168.0.2

Gathering
Intellectuals

& IEEE




Application programming models

* Used to overcome the complexity that is between
hardware architecture and application software.

* MPI and MPICH

—Install MPI (message passing interface) and MPICH
libraries on both master and compute nodes

—Utilizes TCP/IP along with some libraries

— Create a C or C++ parallel program that can run on
multiple nodes simultaneously

—It provide fast node to node messaging passing protocols
and daemon-based process startup/control for
supercomputing functioning.

Intellectuals ®




Conclusion

® HPC can ensure a country’s strength, improve its national
security system, defense ability, and promote the timely
development of highly modern weaponry. It is one of the
most important measures of a country's overall
prowess and economic strength.

® |n this presentation, heterogeneous supercomputer
systems are discussed for artificial intelligence
applications.

® The system architectures are equipped with state of the art
parallel programming models and heterogeneous
hardware architecture which facilitate application
programmer to write applications for life and earth
sciences efficiently and easily.

_ Intellectuals ®




Problem Formulation

Proposal

Supercomputing System

High Performance Applications
Supercomputer Architectures
Conclusion

Hands on Experience

& IEEE



Hands on Experience and Training

Supercomputer System Architectures

— CPU based 1.1 Peta FLOPS
— GPU based 250 Tera FLOPS
— Embedded 300 Giga FLOPS

Applications
— Artificial Intelligence using Deep Learning

— Computer Vision

— Analysis and Modeling using HPC Simulation Tools e.g.
Ansys HPC.

— High Performance Embedded Systemats
— Single Board Computer

Intellectuals ®




Supercomputing for High
Performance Applications

Dr. Tassadaq Hussain
Assistant Professor Riphah International University

Collaborations:
Microsoft Research and Barcelona Supercomputing Center
Barcelona, Spain
UCERD Pvt Ltd Islamabad
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Consultancy for:
FYPs and Future Career Guidance.
Engineering Workshops, Master

and Ph.D. thesis.
Design and Develope Industrial

UCERD Digital Systems. \,\ww.ucerd.com

& IEEE
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