
Memory Hierarchy:
Memory Technology and Principal of Locality

by: Tassadaq Hussain
Director Centre for AI and BigData

Professor Department of Electrical Engineering
Namal University Mianwali

Collaborations:

Barcelona Supercomputing Center, Spain
European Network on High Performance and Embedded Architecture and Compilation

Pakistan Supercomputing Center

Contents

Memory Technology and Principal of Locality
 Cache Organization and Performance
Cache Optimization
Virtual Memory and Virtual Machines

 Memory system
– Supplying data on time for computation (speed)
– Large enough to hold everything needed (capacity)

Memory Technology

Static RAM (SRAM) 6-Transistor Cell – 1 Bit

DRAM Cell Architecture

Performance: Latency and Bandwidth
 Performance of Main Memory:
 – Latency: Cache Miss Penalty

 Access Time: time between request and word arrives
 Cycle Time: time between requests

 – Bandwidth: I/O & Large Block Miss Penalty (L2)
 Main Memory is DRAM : Dynamic Random Access Memory
 – Needs to be refreshed periodically (8 ms)
 – Addresses divided into 2 halves (Memory as a 2D matrix)

 RAS or Row Access Strobe and CAS or Column Access Strobe
 Cache uses SRAM : Static Random Access Memory
 – No refresh (6 transistors/bit vs. 1 transistor)

 Size: DRAM/SRAM 4-8
 Cost/Cycle time: SRAM/DRAM 8-16

Stacked/Embedded DRAMs

Flash Memory

• Type of EEPROM
• Types: NAND (denser) and NOR (faster)
• NAND Flash:
– Reads are sequential, reads entire page (.5 to 4 KiB)
– 25 us for first byte, 40 MiB/s for subsequent bytes
– SDRAM: 40 ns for first byte, 4.8 GB/s for subsequent bytes
– 2 KiB transfer: 75 uS vs 500 ns for SDRAM, 150X slower
– 300 to 500X faster than magnetic disk

Memory Wall

Principle of Locality

Memory Characteristics
 Location
 Capacity
 Unit of transfer
 Access method
 Performance
 Physical type
 Physical characteristics
 Organisation

Location
 CPU
 Internal
 External

Unit of Transfer
 Internal

 Usually governed by data bus width
 External

 Usually a block which is much larger than a word
 Addressable unit

 Smallest location which can be uniquely addressed

Access Methods (1)
 Sequential

 Start at the beginning and read through in order
 Access time depends on location of data and previous

location
 e.g. tape

 Direct
 Individual blocks have unique address
 Access is by jumping to vicinity plus sequential search
 Access time depends on location and previous location
 e.g. disk

Access Methods (2)
 Random

 Individual addresses identify locations exactly
 Access time is independent of location or previous access
 e.g. RAM

 Associative
 Data is located by a mechanism based on placement
 Access time is independent of location or previous access
 e.g. cache

Performance
 Access time

 Time between presenting the address and getting the valid
data

 Transfer Rate
 Rate at which data can be moved

Physical Types
 Semiconductor

 RAM
 Magnetic

 Disk & Tape
 Optical

 CD & DVD
 Others

 Bubble
 Hologram

Physical Characteristics
 Switching
 Decay
 Volatility
 Erasable
 Power consumption

Organisation
 Physical arrangement of bits into words
 Not always obvious
 e.g. interleaved

The Bottom Line
 How much?

 Capacity
 How fast?

 Time is money
 How expensive?

Hierarchy List
 Registers
 L1 Cache
 L2 Cache
 Main memory
 Disk cache

So you want fast?
 It is possible to build a computer which uses only static

RAM (see later)
 This would be very fast
 This would need no cache

 How can you cache cache?
 This would cost a very large amount

Local Memory System
 Cache
 Scratchpad

Cache
 Small amount of fast memory
 Sits between normal main memory and CPU
 May be located on CPU chip or module

Cache and Main Memory

Cache/Main Memory Structure

Cache operation – overview
 CPU requests contents of memory location
 Check cache for this data
 If present, get from cache (fast)
 If not present, read required block from main memory to

cache
 Then deliver from cache to CPU
 Cache includes tags to identify which block of main

memory is in each cache slot

Cache Read Operation - Flowchart

Cache Design
 Addressing
 Size
 Mapping Function
 Replacement Algorithm
 Write Policy
 Block Size
 Number of Caches

 A Conventional Memory System
Architecture

 Cache
 Caches are present in most memory systems.
 The Cache dynamically stores a subset of the

frequently used data. Thus, the timing of a load or store
operation depends on the relationship between its
effective address and the effective addresses of earlier
operations.

 Conventional Cache used byte addressable memory.
 = size of a Cache
 = size of Main Memory
 Addr = Address of Main Memory
 CL = Data Transfer from/to the memory
 NCL = Number of Cache lines (Cls)
 CLS = Cache Line Size

CL, CS, Tag, Index, Offset
 Determine Cache Details:
 Number of cache lines NCL = 10
 Cache line size CLS = 1024 bytes
 Calculate Total Cache Size:
 Total cache size = NCL × CLS
 = 10240 bytes

 Address Structure in Cache: When accessing
data in a cache, the address is typically divided
into three parts:

 Tag: Identifies the unique block of memory that
each cache line represents.

 Index: Specifies which cache line to check.
 Offset: Points to the exact byte within a cache line.

 Define Cache Addressing Parameters:
 Offset Size: Since each cache line is 1024 bytes, we

need enough bits to address 1024 locations within each
line.

 1024=2 power 10, so the offset size is 10 bits.
 Index Size: With 10 cache lines, we need enough

bits to uniquely identify each line.
 10≈2410≈24, so the index size is approximately 4

bits.

 Determine Tag Size: The tag size depends on the
total address space. Let’s assume a 32-bit address
space, which is common in many systems:

 Total address bits = 32 bits
 Tag size = Total address bits - Index bits - Offset bits
 Tag size = 32−4−10=1832−4−10=18 bits

Direct-Mapped Cache
 Direct Mapped cache is an array of fixed size blocks.
 Each block holds consecutive bytes of main memory data.
 Mapping Process:

– The index is used to select a specific cache line.
– The tag in the cache line is compared to the tag of the memory

address to confirm a match (cache hit).
– The offset specifies the exact location of the requested data within

the cache block.

Fully associative cache
 A fully associative cache.
 A fully associative cache permits data to be stored in any cache block, instead of

forcing each memory address into one particular block. — When data is fetched from
memory, it can be placed in any unused block of the cache.

Tag: The tag is derived from the most significant bits of the memory address. It uniquely
identifies the memory block stored in the cache.

Offset: The offset specifies the exact byte within a cache block. Derived from the least
significant bits of the memory address.

Index: Unlike in direct mapping, there is no index because any block can go into any
cache line.

Mapping Process in Fully Associative
Cache

● Placement:
– A memory block can be placed in any cache line. There is no restriction based on

an index.
● Tag Matching:

– When accessing data, the tag of the memory address is compared to the tag stored
in each cache line.

– This requires checking all cache lines (a process called tag lookup).
● Offset Usage:

– Once a tag match (cache hit) is found, the offset is used to locate the specific byte
within the cache block.

Task
 You have 16 bit of address bus
 The maximum size of main memory 64K byte (byte

addressable)
 Design a cache having NCL = 8 and CLS = 4K

 Find out required memory for cache

Set Associative Cache
 A set-associative scheme is a hybrid between a fully

associative cache, and direct mapped cache.
 It's considered a reasonable compromise between the

complex hardware needed for fully associative caches
(which requires parallel searches of all slots), and the
simplistic direct-mapped scheme, which may cause
collisions of addresses to the same slot (similar to collisions
in a hash table).

Mapping
● Index Selection:

– The index is used to determine which set the memory block maps to.
● Tag Matching:

– Within the selected set, the tag of the memory address is compared with the
tag of each cache line in the set.

– This process determines if the block is in the cache (cache hit).
● Offset Usage:

– If the block is found in the set, the offset specifies the exact byte within the
cache block.

Scratchpad

 Scratchpad
 The Scratchpad is a fast directly addressed software managed SRAM

memory.
 The Scratchpad has better real-time guarantees than caches and by its

significantly lower overheads it is better in access time, energy consumption
and area.

 Instead of using traditional load/store instructions the scratchpad uses direct
memory-memory operations using DMA.

 The Scratchpad memory access uses source and destination address
registers, each of which holds a starting address of the memory.

Main Memory System
 DRAM is combination

Row x Column
 Row Address
 Column Address

Virtual Memory
 Virtual memory is a memory management capability of an

OS that uses hardware and software to allow a computer to
compensate for physical memory shortages by temporarily
transferring data from random access memory (RAM) to
disk storage

 The operating system, using a combination
of hardware and software, maps memory
addresses used by a program, called virtual
addresses, into physical addresses in
computer memory.

 Main storage, as seen by a process or task,
appears as a contiguous address space or
collection of contiguous segments.

Memory Mapping
 Memory mapping is a crucial aspect of System on Chip (SoC) architecture. It refers to the way different

components of the SoC are allocated addresses in the memory space. This mapping allows the CPU and
other components to access and interact with various parts of the system's memory and peripherals.

 Key Aspects of Memory Mapping in SoCs.
 Bus System
 Address Space Allocation
 Memory Regions
 Memory Mapping Techniques:
 Memory Map Tables
 Access Mechanisms
 Virtual Memory Mapping
 Address Decoding:

 Example of Memory Mapping in an SoC
 0x0000_0000 - 0x1FFF_FFFF: RAM (1 GB of addressable RAM)
 0x2000_0000 - 0x3FFF_FFFF: ROM or Flash memory
 0x4000_0000 - 0x5FFF_FFFF: Peripheral registers (e.g., GPIO, UART)
 0x6000_0000 - 0x7FFF_FFFF: External memory or memory-mapped I/O space

Bus System Components
 Address Bus: Carries address information from the CPU to memory and peripherals. The

address bus width determines the range of addresses that can be used in memory mapping.
 Data Bus: Transfers data between components based on the address specified on the

address bus.
 Control Bus: Carries control signals that manage the read and write operations and other

control functions.
 Functions:

 Memory Map Configuration
 Interconnects and Buses
 Address Decoding
 Memory-Mapped I/O

Example:

On-Chip Memory and Peripheral Mapping: Within the bus system, the memory map determines the layout of on-chip
memory, peripheral registers, and I/O devices. The bus system ensures that the CPU and other components access
the correct addresses based on this map.

Address Map/Space Allocation
 Memory Address Space: Defines the range of addresses

used to access different types of memory, including RAM,
ROM, and external memory.

 Peripheral Address Space: Allocates addresses for
various peripherals and I/O devices.

Memory Regions

 Boot Memory: Often used to store the bootloader or initial
firmware.

 Code Memory: Stores executable code and program instructions.
 Data Memory: Used for storing variables, stack, and heap data.
 Peripheral Registers: Memory-mapped addresses used to control

and interact with peripheral devices (e.g., timers, UARTs, GPIOs).

Memory Mapping Techniques:
 Flat Memory Model: All memory

and peripherals are mapped
into a single, linear address
space.

 Segmented Memory Model:
Memory and peripherals are
divided into segments or blocks,
each with a specific address
range.

Memory Map Tables and Access Mechanisms
 Memory Map Table: A detailed table that outlines the

starting address, size, and type of each memory region
and peripheral.

 Memory-Mapped I/O: Peripherals are accessed by
reading from or writing to specific memory addresses.

 Access Mechanism:
 Linker Script: Define how different code and data

sections are placed in memory.
 Direct Memory Access (DMA): Allows peripherals to

directly access memory without CPU intervention,
reducing latency and improving performance.

Virtual Memory Mapping
 Virtual Address Space: Some SoCs use virtual memory systems to abstract physical memory

addresses, providing flexibility in memory management.
 Virtual Address: It is an address of a program's memory space.
 Page Table: The table contains mappings from virtual addresses to physical addresses. Each entry in the

page table corresponds to a "page" of memory.
 Page Size: Memory is divided into fixed-size pages, typically ranging from 2 KB to 16 KB (though sizes like

4 KB or 8 KB are common). The virtual address is split into two parts:
 Page Number: Identifies the page within the virtual address space.
 Offset: Identifies the specific location within the page.

 Translation: When a virtual address is used, the page number is looked up in the page table to find the
corresponding physical page. The offset is then added to this physical page to get the final physical address.

 Physical Address: The final physical address points to the exact location in the system's memory (RAM)
where the data is stored.

59

In
st

ru
ct

io
n

th
ro

ug
hp

ut
 in

 B
IP

S

Number of Cores
[2] Muhammad Bakir; Georgia Tech

Problem Statement
 Bandwidth wall with increase in the number of cores [2]

60

 Multi-core system
 RISC
 Vector & hardware accelerator cores

 Access Pattern-based Memory Architecture
 Irregular/complex access patterns

Focus to improve processor/memory performance

61

Basic types of memory access patterns

 Regular access
 Fixed stride
 Predictable
 Parallel

 Irregular access
 Variable strides
 Known

» Predictable at compile-time
 Unknown

» Independent
» Dependent

Regular access pattern

 Irregular known access pattern

Irregular unknown independent access pattern

Irregular unknown dependent access pattern

data[1024];
 for(int x=y;x<100;x=x++)
 { read=data[x];
 compute(read);
 }

 data[1024];
 for(int x=0;x<5;x=x++)
 { read=data[factorial(x)];
 compute(read); }

 data[100];
 for(int x=0;x<100;x=x++)
 { read=data[read+x];
 compute(read);
 }

 Data[1024];
 addr=runtime_input();
 for(int x=0;x<5;x++)
 { read=data[factorial(x)+addr];

 compute(read); }

62

Basic types of memory access units

 Load/store access
 Conventional
 Arbitrary access patterns
 Fine granularity access
 Low throughput

 DMA
 Streaming access
 Programmed with function call
 High latency
 High throughput

 for (inc=start_value; inc=end_value; inc++)
 {
 //Addresses Management by Microprocessor
 local_buffer[inc]=mem_buffer[inc+offset];
 }

Read_DMA(source,destination,stream);
Write_DMA(source,destination,stream);

63

Proposal

 Improve processor/memory performance gap by
Scheduling multiple cores

Managing/arranging memory access patterns

Efficiently utilizing hardware resources

64

Objectives

 Operates independently (run time)
Manage/control data requests and access description
Perform memory read/write operations in parallel with processing unit

 Schedules requests
 RISC (SSP), vector processor (VP) and application specific

hardware accelerator (ASHA)

 Accesses complex / irregular patterns

Strided access, 1D/2D/3D tiles
 Irregular complex patterns (e.g. linked list streams)

 Provides Programming support
Provide standard C/C++ language calls

65

Pattern based Memory Controller (PMC)

Stencil
access pattern

`

66

PMC: Architecture
 Local Memory System
 Memory Manager
 Main Memory System

 Regular pattern for single core
 Irregular pattern for single core
 Regular and irregular pattern for multi core

	Slide 1
	Contents
	Slide 3
	Slide 4
	Memory Technology
	Static RAM (SRAM) 6-Transistor Cell – 1 Bit
	DRAM Cell Architecture
	Performance: Latency and Bandwidth
	Stacked/Embedded DRAMs
	Flash Memory
	Memory Wall
	Slide 12
	Slide 13
	Slide 14
	Principle of Locality
	Memory Characteristics
	Location
	Unit of Transfer
	Access Methods (1)
	Access Methods (2)
	Performance
	Physical Types
	Physical Characteristics
	Organisation
	The Bottom Line
	Hierarchy List
	So you want fast?
	Local Memory System
	Cache
	Cache and Main Memory
	Cache/Main Memory Structure
	Cache operation – overview
	Cache Read Operation - Flowchart
	Cache Design
	A Conventional Memory System Architecture
	Cache
	Slide 37
	CL, CS, Tag, Index, Offset
	Slide 39
	Direct-Mapped Cache
	Fully associative cache
	Slide 42
	Task
	Set Associative Cache
	Slide 45
	Scratchpad
	Scratchpad
	Main Memory System
	Virtual Memory
	Slide 50
	Memory Mapping
	Slide 52
	Bus System Components
	Address Map/Space Allocation
	Memory Regions
	Memory Mapping Techniques:
	Memory Map Tables and Access Mechanisms
	Virtual Memory Mapping
	Slide 59
	Focus to improve processor/memory performance
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

