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Processor

Input
Control
Memory
‘ Datapath Output

Memory system
— Supplying data on time for computation (speed)
— Large enough to hold everything needed (capacity)
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Memory Technology

Random Access: access time is the same for all locations

DRAM: Dynamic Random Access Memory
— High density, low power, cheap, slow
— Dynamic: need to be “refreshed” regularly

— 50ns — 70ns, $20 — $75 per GB

SRAM: Static Random Access Memory

— Low density, high power, expensive, fast

— Static: content will last “forever”(until lose power)
— 0.5ns — 2.5ns, $2000 — $5000 per GB

Magnetic disk
— 5ms — 20ms, $0.20 — S2 per GB

Ideal memory:

« Access time of SRAM

« Capacity and cost/GB of
disk



Static RAM (SRAM) 6-Transistor Cell — 1 Bit

6-Transistor SRAM Cell word

word
(row select)

bit bit
*  Write:
1. Drive bit lines (bit=1, bit=0)
2.. Select row replaced with pullup
* Read: to save area

1. Precharge bit and bit to Vdd or Vdd/2 => make sure equal!
2.. Select row

3. Cell pulls one line low

4. Sense amp on column detects difference between bit andbit



DRAM Cell Architecture

* Write: row select

— 1. Drive bit line
— 2. Select row

* Read:
— 1. Precharge bit line to Vdd
— 2. Select row —
— 3. Cell and bit line share charges bit
* Very small voltage changes on the bit line
— 4, Sense (fancy sense amp)
* Can detect changes of ~1 million electrons
— 5. Write: restore the value

* Refresh
— 1. Just do a dummy read to every cell.

|:|




Performance: Latency and Bandwidth

Performance of Main Memory:

— Latency: Cache Miss Penalty
b Access Time: time between request and word arrives
b Cycle Time: time between requests

— Bandwidth: 1/0O & Large Block Miss Penalty (L2)
Main Memory is DRAM : Dynamic Random Access Memory
— Needs to be refreshed periodically (8 ms)

— Addresses divided into 2 halves (Memory as a 2D matrix)
} RAS or Row Access Strobe and CAS or Column Access Strobe

Cache uses SRAM : Static Random Access Memory

— No refresh (6 transistors/bit vs. 1 transistor)
} Size: DRAM/SRAM 4-8
} Cost/Cycle time: SRAM/DRAM 8-16



Stacked/Embedded DRAMS

* Stacked DRAMs in same package as processor
— High Bandwidth Memory (HBM)

Vertical stacking (3D) Interposer stacking (2.5D)

Figure Two forms of die stacking. The 2.5D form is available now. 3D stacking is
under development and faces heat management challenges due to the CPU.



Flash Memory

e Type of EEPROM

» Types: NAND (denser) and NOR (faster)

* NAND Flash:

— Reads are seqguential, reads entire page (.5 to 4 KiB)

— 25 us for first byte, 40 MiB/s for subsequent bytes

— SDRAM: 40 ns for first byte, 4.8 GB/s for subsequent bytes
— 2 KiB transfer: 75 uS vs 500 ns for SDRAM, 150X slower

— 300 to 500X faster than magnetic disk
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®* Memory hierarchy design becomes more crucial with
recent multi-core processors:

* Aggregate peak bandwidth grows with # cores:

— Intel Core i7 can generate two references per core per clock
— Four cores and 3.2 GHz clock

e 25.6 billion 64-bit data references/second +
e 12.8 billion 128-bit instruction references/second
= 409.6 GB/s!
— DRAM bandwidth is only 8% of this (34.1 GB/s)
® Requires:
— Multi-port, pipelined caches
— Two levels of cache per core
— Shared third-level cache on chip

“data+inst. | datatinst | data+tinst || Data + inst

8MBL3 cache

For all applications Inclusive cache policy t2
to share minimize tr affic from snoops




Bigger

Registers
~1 KB (~100 b/core) /<3 ns

256 KB (64 KB/core)

1 MB (256KB/core) / 12 cache \3.3Ns @
7))
8 MB (3Cachs 12.8 ns i
128 MB / L4 Cache \#2.4 ns
32 GB * 2.9 ns

$5-10/GB - Main Memory

~ 118 s067/6B  Solid State (flash) Drive

2-7/9 S50TB  Disk Drive




* Keep most recent accessed data and its adjacent data in the
smaller/faster caches that are closer to processor

* Mechanisms for replacing data

Processor
Control Tertiary
Secondary Storage
20d/3rd Main gty (Tape)
= = (Disk)
A A S Level Memory
Datapath D‘E E A Cache (DRAM)
E o -E (SRAM)




Principle of Locality

* Programs tend to reuse data and instructions near those
they have used recently, or that were recently referenced
themselves

* Spatial locality: Items with nearby addresses tend to be
referenced close together in time

* Temporal locality: Recently referenced items are likely to
be referenced in the near future

« Data sum = 0;

for(i=0; i<n; i++)
sum += a[i];

return sum;

— Reference array elements in succession (stride-1
reference pattern): Spatial Locality

— Reference sum each iteration: Temporal Locality
¢ Instructions
— Reference instructions in sequence: Spatial Locality

— Cycle through loop repeatedly: Temporal Locality



Memory Characteristics

Location

Capacity

Unit of transfer

Access method
Performance

Physical type

Physical characteristics
Organisation



f______,...__—“:—
°|_ocation

° CPU
* Internal
* External



* Unit of Transfer

* Internal
3 Usually governed by data bus width

* External
3 Usually a block which is much larger than a word

* Addressable unit
3 Smallest location which can be uniquely addressed



Access Methods (1)

* Sequential

;
;

3

Start at the beginning and read through in order

Access time depends on location of data and previous
location

e.g. tape

* Direct

3

3
3
3

Individual blocks have unique address

Access Is by jJumping to vicinity plus sequential search
Access time depends on location and previous location
e.g. disk



Access Methods (2)

* Random
3 Individual addresses identify locations exactly

3 Access time is independent of location or previous access
b e.g. RAM

* Associative
3 Data is located by a mechanism based on placement

3 Access time is independent of location or previous access
}e.g. cache



Performance

* Access time

- Time between presenting the address and getting the valid
data

* Transfer Rate
} Rate at which data can be moved



Semiconductor
} RAM
Magnetic

b Disk & Tape
Optical

3 CD & DVD
Others

3 Bubble
3 Hologram

Physical Types



Physical Characteristics

Switching

Decay

Volatility

Erasable

Power consumption



Organisation

* Physical arrangement of bits into words
* Not always obvious
* e.g. Interleaved



The Bottom Line

* How much?
b Capacity
* How fast?
b Time is money

* How expensive?



Registers

L1 Cache

L2 Cache
Main memory
Disk cache

Hierarchy List



So you want fast?

It Is possible to build a computer which uses only static
RAM (see later)

This would be very fast

"his would need no cache
} How can you cache cache?

This would cost a very large amount




Local Memory System

* Cache

* Scratchpad

Address

CPU Control Cache Control Maln
Memory Memory

Data




Cache

* Small amount of fast memory
* Sits between normal main memory and CPU
* May be located on CPU chip or module
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*Cache and Main Memory

Block Transfer

Word Transfer o —
f"‘\—-j\_._'—'\'

-l 1
- r .
[ CPU E _ Cache Main Memory

Fast Slow

(a) Single cache

CPU Level 1 Level 2 Level 3 — Main
(L1) cache (L2) cache |. (L3) cache |lge—1 Memory

Fastest Fast

Less Slow
fast

(b)) Three-lewvel cache organization
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Cache/Main Memory Structure

Line Memory
Mumber Tag Block address
0 0|
1 1]
2 2| Block
- 3 (K words)
L
- | — — — = — — = —
C-1
Block Length
— (K Words) > -
(a) Cache -
-
Block
o LS |
Word
Length

(b} Main memory
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Cache operation — overview

CPU requests contents of memory location
Check cache for this data
If present, get from cache (fast)

If not present, read required block from main memory to
cache

Then deliver from cache to CPU

Cache includes tags to identify which block of main
memory Is in each cache slot
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*Cache Read Operation - Flowchart

Receive address
RA from CPL

1 4
.
_L El

Is blodk No Access main
containing RA » memory for block
in cache? containing RA
Yes
Fetch RA word Allocate cache
and deliver line for main
to CPU memory block

. I

Load main ]
Deliver RA word
memony block to CPU

into cache line




*Cache Design

Addressing

Size

Mapping Function
Replacement Algorithm
Write Policy

Block Size

Number of Caches
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A Conventional Memory Sy‘stem
Architecture

Data Cache Logic SRAM

Main Memory < o ta - Data 44— Main Memory
Address Space

Address .
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Cache

* Caches are present in most memory systems.

* The Cache dynamically stores a subset of the
frequently used data. Thus, the timing of a load or store
operation depends on the relationship between its
effective address and the effective addresses of earlier
operations.



* Conventional Cache used byte addressable memory.
« 2b = sjze of a Cache

* 27 = size of Main Memory

Addr = Address of Main Memory

CL = Data Transfer from/to the memory

NCL = Number of Cache lines (Cls)

CLS = Cache Line Size



CL, CS, Tag, Index, Offset

Determine Cache Details:

Number of cache lines NCL = 10
Cache line size CLS = 1024 bytes
Calculate Total Cache Size:
Total cache size = NCL x CLS
= 10240 bytes

* Address Structure in Cache: When accessing
data in a cache, the address is typically divided
into three parts:

. Tag: ldentifies the unique block of memory that
each cache line represents.

* Index: Specifies which cache line to check.
* Offset: Points to the exact byte within a cache line.

Define Cache Addressing Parameters:

Offset Size: Since each cache line is 1024 bytes, we
need enough bits to address 1024 locations within each
line.

1024=2 power 10, so the offset size is 10 bits.

Index Size: With 10 cache lines, we need enough
bits to uniquely identify each line.

10=2410=24, so the index size is approximately 4
bits.

Determine Tag Size: The tag size depends on the
total address space. Let’s assume a 32-bit address
space, which is common in many systems:

Total address bits = 32 bits
Tag size = Total address bits - Index bits - Offset bits
Tag size = 32-4-10=1832-4-10=18 bits



o
3. Read from address ‘1019,0000011*00000,
Pl
1010 0000011 00000
Tag  Index  Offset

Line #

Result: hit, the line is valid,
and the tag matches.

127:

B s v e e

Direct-Mapped Cache

V|D Iag' Data (ii-bvte block)
0 [0

TRETE

00

10| 1010

olo|

00




Direct-Mapped Cache

* Direct Mapped cache is an array of fixed size blocks.
* Each block holds consecutive bytes of main memory data.

* Mapping Process:
— The index Is used to select a specific cache line.

— The tag in the cache line is compared to the tag of the memory
address to confirm a match (cache hit).

— The offset specifies the exact location of the requested data within
the cache block.



*Fully associative cache

* Afully associative cache.

* Afully associative cache permits data to be stored in any cache block, instead of
forcing each memory address into one particular block. — When data is fetched from
memory, it can be placed in any unused block of the cache.

Tag: The tag is derived from the most significant bits of the memory address. It uniquely
Identifies the memory block stored in the cache.

Offset: The offset specifies the exact byte within a cache block. Derived from the least
significant bits of the memory address.

Index: Unlike in direct mapping, there is no index because any block can go into any
cache line.



Mapping Process In Fully Associative
Cache

e Placement:

- A memory block can be placed in any cache line. There is no restriction based on
an index.

* Tag Matching:

- When accessing data, the tag of the memory address is compared to the tag stored
In each cache line.

— This requires checking all cache lines (a process called tag lookup).

* Offset Usage:

- Once a tag match (cache hit) is found, the offset is used to locate the specific byte
within the cache block.



Task

°* You have 16 bhit of address bus

* The maximum size of main memory 64K byte (byte
addressable)

* Design a cache having NCL =8 and CLS = 4K
} Find out required memory for cache



* Set Associative Cache

* A set-associative scheme is a hybrid between a fully
associative cache, and direct mapped cache.

* It's considered a reasonable compromise between the
complex hardware needed for fully associative caches
(which requires parallel searches of all slots), and the
simplistic direct-mapped scheme, which may cause
collisions of addresses to the same slot (similar to collisions
In a hash table).



Mapping

* Index Selection:
- The index Is used to determine which set the memory block maps to.
* Tag Matching:

- Within the selected set, the tag of the memory address is compared with the
tag of each cache line in the set.

— This process determines if the block is in the cache (cache hit).

* Offset Usage:

- If the block is found in the set, the offset specifies the exact byte within the
cache block.
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Scratchpad

r— = = =

Data . Scratchpad

e d' ME;" et Al = ’ Decode 4 SRAM <> DMA
. e | Frn:mur_mii. Unit

I - — —
| Main Memory Gols T
!ﬂ:ldms Space - t_ﬂ-mmands _
_ bl ol

Main Memory
System




Scratchpad

The Scratchpad is a fast directly addressed software managed SRAM
memory.

The Scratchpad has better real-time guarantees than caches and by its

significantly lower overheads it is better in access time, energy consumption
and area.

Instead of using traditional load/store instructions the scratchpad uses direct
memory-memory operations using DMA.

The Scratchpad memory access uses source and destination address
registers, each of which holds a starting address of the memory.



Main Memory System

* DRAM Is combination
Row X Column

* Row Address

* Column Address

| Sense Amps

row buffer

Column Select

Main Memory

-
T o



Virtual Memory

* Virtual memory is a memory management capability of an
OS that uses hardware and software to allow a computer to
compensate for physical memory shortages by temporarily
transferring data from random access memory (RAM) to
disk storage

BYJU'S

Secondary
g  — = storage
|_l-". Frie ___! '"lr"-\. i:l Te ==l

Registers

Maln Memary



* The operating system, using a combination vitus memory  prysica

of hardware and software, maps memory
addresses used by a program, called virtual
addresses, into physical addresses In
computer memory.

* Main storage, as seen by a process or task,
appears as a contiguous address space or
collection of contiguous segments.

per process) mermory




Memory Mapping

* Memory mapping is a crucial aspect of System on Chip (SoC) architecture. It refers to the way different
components of the SoC are allocated addresses in the memory space. This mapping allows the CPU and
other components to access and interact with various parts of the system's memory and peripherals.

* Key Aspects of Memory Mapping in SoCs.
> Bus System
> Address Space Allocation
> Memory Regions
> Memory Mapping Techniques:
> Memory Map Tables
> Access Mechanisms
> Virtual Memory Mapping
> Address Decoding:

* Example of Memory Mapping in an SoC
> 0x0000_0000 - 0x1FFF_FFFF: RAM (1 GB of addressable RAM)
> 0x2000_0000 - Ox3FFF_FFFF: ROM or Flash memory
> 0x4000_0000 - Ox5FFF_FFFF: Peripheral registers (e.g., GPIO, UART)
> 0x6000_0000 - Ox7FFF_FFFF: External memory or memory-mapped I/O space
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Bus System Components

* Address Bus: Carries address information from the CPU to memory and peripherals. The
address bus width determines the range of addresses that can be used in memory mapping.

* Data Bus: Transfers data between components based on the address specified on the
address bus.

* Control Bus: Carries control signals that manage the read and write operations and other
control functions.

* Functions:
} Memory Map Configuration
} Interconnects and Buses
} Address Decoding
} Memory-Mapped I/0
Example:

On-Chip Memory and Peripheral Mapping: Within the bus system, the memory map determines the layout of on-chip
memory, peripheral registers, and 1/O devices. The bus system ensures that the CPU and other components access
the correct addresses based on this map.



Address Map/Space Allocation

* Memory Address Space: Defines the range of addresses
used to access different types of memory, including RAM,
ROM, and external memory.

* Peripheral Address Space: Allocates addresses for
various peripherals and 1/O devices.



Memory Regions

* Boot Memory: Often used to store the bootloader or initial
firmware.

* Code Memory: Stores executable code and program instructions.
* Data Memory: Used for storing variables, stack, and heap data.

* Peripheral Registers: Memory-mapped addresses used to control
and interact with peripheral devices (e.g., timers, UARTs, GPIOs).



Memory Mapping Techniques:

Flat Model

* Flat Memory Model: All memory ...

and peripherals are mapped —
Into a single, linear address
space.

* Segmented Memory Model:
Memory and peripherals are

Segmented Model

Linear
Address
Space*

Segments

divided into segments or blocks, ... ciecie ssress
each with a specific address g ——— >

Address
Space*

Address >egment Selector
range.



Memory Map Tables and Access Mechanisms

Memory Map Table: A detailed table that outlines the
starting address, size, and type of each memory region
and peripheral.

Memory-Mapped I/O: Peripherals are accessed by
reading from or writing to specific memory addresses.

Access Mechanism:

> Linker Script: Define how different code and data
sections are placed in memory.

> Direct Memory Access (DMA): Allows peripherals to
directly access memory without CPU intervention,
reducing latency and improving performance.
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Virtual Memory Mapping

* Virtual Address Space: Some SoCs use virtual memory systems to abstract physical memory
addresses, providing flexibility in memory management.

* Virtual Address: It is an address of a program's memory space.

* Page Table: The table contains mappings from virtual addresses to physical addresses. Each entry in the
page table corresponds to a "page" of memory.

* Page Size: Memory is divided into fixed-size pages, typically ranging from 2 KB to 16 KB (though sizes like
4 KB or 8 KB are common). The virtual address is split into two parts:

> Page Number: Identifies the page within the virtual address space.

> Offset: Identifies the specific location within the page.

* Translation: When a virtual address is used, the page number is looked up in the page table to find the
corresponding physical page. The offset is then added to this physical page to get the final physical address.

* Physical Address: The final physical address points to the exact location in the system’'s memory (RAM)
where the data is stored.



Problem Statement

Bandwidth wall with increase in the number of cores [2]
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Focus to iImprove processor/memory performance

Multi-core System

® NMulti-core system
» RISC
» Vector & hardware accelerator cores

® Access Pattern-based Memory Architecture
> Irregular/complex access patterns

Access Pattern-based

Memory Architecture

Main Memory

&= LUNIWVERSITAT POLITECPMICSA
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® Basic types of memory access patterns
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® Basic types of memory access units

® | pad/store access
» Conventional
> Arbitrary access patterns
» Fine granularity access
» Low throughput

® DMA
» Streaming access
» Programmed with function call
» High latency
» High throughput

4 LUNIWVERSITAT POLITECPMICSA
LT DE AT LIRS
HE BARCELOMATECH
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Matrix

® for ( inc=start value; inc=end _value; inc++)

*
* //Addresses Management by Microprocessor
* local_buffer[inc]=mem_buffer[inc+offset];

*

03 (1P % ] [§ o 05 oz ] {ra

A

Matrix

Read DMA(source,destination,stream);
Write_ DMA(source,destination,stream);
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Proposal

= Local
M e ] memory
;5 System

Memory
Manager

Main
Memory
System

® Improve processor/memory performance gap by

» Scheduling multiple cores

» Managing/arranging memory access patterns

» Efficiently utilizing hardware resources
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Objectives

® Operates independently (run time)
» Manage/control data requests and access description
» Perform memory read/write operations in parallel with processing unit

® Schedules requests
» RISC (SSP), vector processor (VP) and application specific
hardware accelerator (ASHA)

® Accesses complex / irregular patterns
» Strided access, 1D/2D/3D tiles
> Irregular complex patterns (e.g. linked list streams)

® Provides Programming support
» Provide standard C/C++ language calls
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Pattern based Memory Controller (PMC)
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PMC: Architecture

® | ocal Memory System
® Memory Manager
® Main Memory System
- Regular pattern for single core
- Irregular pattern for single core
- Regqular and irregular pattern for multi core
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