Computer Programming

by: Tassadaq Hussain
Director Centre for Al and BigData
Professor Department of Electrical Engineering
Namal University Mianwali

Collaborations:
Barcelona Supercomputing Center, Spain
European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center

Sof Haardl
::E-.Hl:n'rbe-- reaf time ._r-rc'tli tETe
o TET =t Intermet L Tt Fligh= Elecnroaic
simrulat o imterface wideo et el CEETMIITrUINIICI EHET S coarirod BTl re=s

High Level Language temp = v[k];
Program (e.g., C) vik] = vik+1];

v[k+ 1] = temp;

—— T Compile M S —
= 1 | Anything can be represented
[Assemlv LHHEUESE Is'fu tl @[2 = as apnumber
Program (e.g., RISC-V) w30, 432 '

I.e., data or instructions
Machine Laneu D000 1001 1100 0110 1010 1111 0101 1000

achine ll'lguage 1010 1111 0101 1000 0000 1001 1100 0110
Program (RISC-V) 1100 0110 1010 1111 0101 1000 0000 1001

ool hnan o Aannn 1001 1100 0110 1010 1111

Machine
Interpretation
Hardware Architecture Description
(e.g., block diagrams)
Architecture)
Implementation

Logic Circuit Description
(Circuit Schematic Diagrams)

?¢I

e
v G

Requirements: Basic and Complex

Criterion

Processor

Memory
Development cost
Production cost
Number of units
Power consumption
Lifetime

Reliability

Low

4- or 8-bit

< 64 KB

< $100,000

<510

< 100

> 10 mW/MIPS

Days, weeks, or months

May occasionally fail

Medium

16-hit

64 KB to 1 MB
$100,000 to 51,000,000
$10 to 51,000

100 to 10,000

1to 10 mW/MIPS

Years

Must work reliably

High

32- or 64-bit
>1MB

> 51,000,000
> $1,000

> 10,000

< 1 mW/MIPS
Decades

Must be fail-proof

Instruction Set Architecture

Instruction Set Architecture
(ISA) serves as the interface
petween software (e.g., high-level
orogramming languages) and
nardware (digital systems like
CPUs or processors).

It defines the set of instructions
that a processor can execute,
along with the corresponding
machine-level operations.

—————

Uil

*Processor Memory Map:
Hardware and Software Placement

* The processor's memory map is critical for defining how different memory regions
and peripherals are addressed. It resides in both hardware and software, serving
distinct roles in each domain.

Hardware Placement of Memory Map

In hardware, the memory map is implemented as part of the
address decoding logic, typically located within the memory
controller module or the interconnect/bus fabric.

Address Decoding Logic:
Encodes address ranges in comparators or lookup tables.

Routes requests based on address ranges.

Address Range MMemory Region
BXEEEE_0BEE - OxeR88_FEEE Local Scratchpad Memory
Bx8001_a008 - axa081_FFEE Cachwe

Placement in HDL:
Found in the memory controller module or bus arbiter % 99 ~©xIFFFEEEE Mainbemary
Hardware Implementation (Yerilog):

mOdUIe- always @ *) begin
if [address >= 32"hooo8_o0ed A& address <= 32'hEB88_EFFF) begin

MmOy select <= SPM; /fF Scratchpad Mempry
32 'hioee 0809 &8 address <= 32'h1FFF_EFFE) begin

Implements logic for decoding incoming address lines e i ¢ Tadaress =
memory_select <= MATH_HEM; £/ Main Memory

end else begin

and routing requests to the correct memory region. enory_seiect
B

and

== MONE: 5/ Inmwvalid mddress

Software: Memory Map

In software, the memory map is defined in header files, configuration files, or linker
scripts for firmware and OS use. This ensures that software developers can access
hardware components and memory regions using predefined constants.

Header Files:
Define base addresses and address ranges as macros or constants. Linker Script:

. Specifies physical memory layout and assigns sections for code and
Example (C Header File): data.

Example (Linker Script):

#define SPM_BASE_ADDR 0x00000000 // Scratchpad Memory Base 1{\4EMORY
#define MAIN_MEM_ADDR 0x10000000 // Main Memory Base SPM (rwx) : ORIGIN = 0x00000000, LENGTH = 64K
#define CACHE_ADDR 0x00010000 // Cache Bas MAIN_MEM (rwx) : ORIGIN = 0x10000000, LENGTH = 512M

}
SECTIONS

{

text : { *(.text) } > SPM

.data : { *(.data) } > MAIN_MEM
}

System Schematic
and Memory Mapping

Unused

Flash Memory
(16 MB)

Unused

PXA255
Peripherals

Unused

SMSC Ethernet
Controller

Unused

SORAM
(64 MB)

OxFFFFFFFF
051000000

DS O0M0000
Du44000000

040000000
0x0800030F

008000300

004000000

000000000

Net Pin

label number
{12 = ..-Reference designator

010,151

/—-—C;wnu..zn]

Bus et » r Y
'\L m.‘ P‘h;lﬂr”j;e A'E wf‘
Tt afs
i 2 B
5 03 & 03 M 45 Ad ;
s D4 1)) D4 A5 48 AS A
5 05 11 05 A6 49 Al A
s D6 11 06 A7 bl A7 A
Off-page connector b7 13 - A8 51 A3 1
s Dg 14 08 G 52 A9 A
;) 16 Do A10 53 A0)
] 011 1% on 12 55 Al2 A
02 20 012 A3 5 A3 A
] 013 2 D13 114 57 Atd A
. Dy 22 D14 AT 58 AlS A
3 015 23 D15 116 50 AlG A
117] A7 A
et A8 :i :::
. A
Junction ATS 65 w20
: AH) pm—ey—
Y 4 Y10 66
CPU_RESET] IR RESET Al 5
I o F3
A2y ——
S R 143 GO 1 AN 0 Net lnbel showing
<] IX-1 131 m’rﬂ:l AT5 72 : connections
132
LS8 _INT GPIO_3
L 101 e Ko connect
PLODCDO
IRTS1 [——te 102 p1.1/RT50
113 I
.-_I
fal PEA2SS
R]'ﬂWS_’FR H No connection * GHD QUTPUT FORT

between fwo nefs

C nri-l,l:-m:iw.'! type

Define Memory Address

f* Timer Registers */

fdefing
fdefing
fidefine
fdefing
fdefine
fidefine
fdefine

TIMER 0 MATCH REG
TIMER 1 MATCH REG
TIMER 2 MATCH REG
TIMER 3 MATCH REG
TIMER_COUNT REG

TIMER STATUS REG

TIMER_INT ENABLE REG

{{uint3z_t volatile
{{uint32 t volatile
(*({uint3z_t wolatile
(*({uint32_t volatile
(*(({uint32_t wolatile
(*({uint3z_t wolatile
(*({uint3z_t wolatile

I::t
(1-

/* Timer Interrupt Enable Register Bit Descriptions */

fdefine
fdefine
#define
Fdefine

TIMER_0_INTEN
TIMER_1_INTEN
TIMER_2_INTEN
TIMER_3_INTEN

(001}
(on02)
[ow0d)
(008)

f* Timer Status Register Bit Descriptions */

Fdefine
fdefine
fdefing
Fdefine

/* Interrupt Controller Registers */
fdefine INTERREUPT PENDING REG
fdefine INTERRUPT ENABLE REG
fidefine INTERRUPT TYPE REG

TIMER 0 MATCH
TIMER_1_MATCH
TIMER 2 MATCH
TIMER_3_MATCH

[Cw01)
(ox02)}
(w04}
{008)

{(*((uint32_t wolatile
(*(({uint3z_t volatile
(*{{uint3z t volatile

/* Interrupt Enable Register Bit Descriptions */

fdefine
fdefine
fdefine
fdefing
fdefine
fdefine

GPI0_0_ENABLE
UART ENABLE

TIMER_O_ENABLE
TIMER 1_ENABLE
TIMER_2_ENABLE
TIMER_3_ENABLE

[Gee00000100)
{0x00400000)
{ 04000000)
[Ox0E000000)
(010000000)
(0x20000000)

* J0x40400000))
*J0x40A0D004))
*)04 000008))
* J0x4040000C))
0w 000100)
*JOxA0AD0014))
*N0x40AD00IC)

*10:40000000))
*Jox40000004))
*10x40000008))

/* General Purpose I/0 (GPIO) Registers */

#tdefine GPIO 0 _LEVEL REG
#define GPIO 1 LEVEL_REG
ftdefine GPIO 2 LEVEL REG
f#define GPIO O DIRECTION REG
#define GPIO 1 DIRECTION REG
#tdefine GPIO 2 DIRECTION REG
#define GPIO 0 _SET_REG
ftdefine GPIO 1 SET REG
#define GPIO 2 SET REG
#define GPIO_ 0 _CLEAR_REG
#define GPIO 1 _CLEAR REG
#idetine GPIO_2 CLEAR_REG
#define GPIO 0 FUNC LO REG
#define GPIO 0 _FUNC HI REG

(*((uint32_t
(*((uint32_t
(*((uint32_t
(*(({uint32_t
(*((uint32_t
(*(({uint32_t
(*((uint32_t
(*((uint32_t
(*((uint3z t
(*((uint3z2_t
(*((uint32 t
(*((uint32_t
(*((uint32 t
(*((uint32 t

volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile

*)0x40E00000))
*)0x40E00004))
*)0x40E00008))
*)0x40E0000C))
*)0x40E00010))
*)0x40E00014))
*)0x40E00018))
*)0x40E0001C))
*)0x40E00020))
*)0x40E00024))
*)0x40E00028))
*)0x40E0002C))
*)0x40E00054))
*)0x40E00058))

Computer Programming and Memory Layout

Understanding C memory layout is crucial for debugging, optimizing

performance, security and interfacing with low-level systems.

Text (Code) Segment:
Data Segment:

BSS Segment:

Heap Segment:

Stack Segment:

BTk

* Text (Code), Data and BSS Segment:

* The text segment contains the executable code of the program. It is read-only and holds the instructions
for the program.

* The data segment contains initialized global and static variables. In the example code, global data is an
Initialized global variable with value 10.

* The BSS (Block Started by Symbol) segment contains uninitialized global and static variables. The BSS
segment is set to zero during program startup. In the example code, global bss variable will be added to
the bss section by linker.

* The Text, Data, and BSS segments collectively form the static part of the program that contains fixed-
sized instructions and data that persists throughout its execution. These should be kept in a non-volatile
memory to ensure successful execution of code following a power cycle.

* You can use the size utility that comes with the compiler to get the size of the executable. Below is the
output for the example code:

* text data bss dec hex filename

* 1585 600 8 2193 891 main.out

Heap and Stack Segments

Heap Segment:

The heap segment is used for dynamic memory allocation during the program's runtime. In the
example, we allocate memory for an integer using malloc(), and heap_var points to the newly
allocated memory location.

It's important to free the allocated memory after it is no longer needed.

Over time, repeated memory allocation without freeing memory can cause the program's memory
usage to grow unnecessarily leading to poor performance and runtime allocation failures.

Stack Segment:

The stack segment is used for managing function calls, local variables, and function call frames.
In the example, stack var is a local variable that will be allotted on the stack during the execution
of the main() function.

The stack and heap memory share the dynamic memory area of the program. The stack typically
starts from the end address of the memory and grows downward, while the heap starts from the
end of the BSS segment.

HIGHER ADDRESS

UNMAPPED

11

STACK

b

LOWER ADDRESS

HIGHER ADDRESS

Commandlne argument
& cavironmen! varibles

main()

FUNCTION 1()

Stack Frames

FUNCTION 2()
b

Drvnamic Memory

Dala Segment

Executable Code

LOWER ADDRESS

Stack frames of
different functions
including its local
variables

malloc allocation

un-initialized DATA
segment

Initialized DATA
segment

#includecstdio. h>
#ing lude<mal loc. hx

vold FUNCTION 1();
void FUNCTION_2();

char S1[]="FIRRCODES")

int 15
const int x=1;

imt main()
{

static int TEMP=@&;

char *p={char*)malloc{sizeof(char)); ./ Heap

FUNCTION_1(};

return &)

}
void FUNCTION 1()
{

int a;

FUNCTION_2{)};
¥

void FUNCTION_2()
{

H

int bj

LRI R I e g ey)
SRATTUECTIED Fa@d=wrt

1rad DATA Tagment

mimitiglts

o ml] - d "
FAMLTROL ISR AF

[0

A
!} DATA &g

ment

seg

mert

* Instruction Section: Contains the compiled = * MEMORY

machine code instructions (text section). "1
ROM (rx) : ORIGIN = 0x08000000, LENGTH =512K
* Data Section: Contains initialized data + RAM (nwx) : ORIGIN = 0x20000000, LENGTH = 64K
(data section). .}
* The linker combines the code and data
sections, resolves symbols, and sets up " SECTIONS
memory addresses. "
text: {
* The linker script defines how different . *(.text)
sections are mapped into the memory of * }>ROM
the microcontroller. ¥
* It specifies memory regions and assigns 'dit(a d:a{ta)
addresses to different sections of the code 1> é AM

and data. .

Linker Script: Program and Data Memory Allocation

The high addresses are the top of the figure and the low addresses
are the bottom.

The stack pointer (sp) starts at BFFF FFFO hex and grows down
toward the Static data.

The text (program code) starts at 0001 0000hex and includes the
statically-linked libraries.

The Static data starts immediately above the text region; in this

example, we assume that address is 1000 0000hex .

Dynamic data, allocated in C by malloc(), is just above the Static data.

Called the heap, it grows upward toward the stack. It includes the

dynamically-linked libraries.

sp = bfff ffflpay

1000 000040y

pc = 0001 0000pex

0

Stack

T

Dynamic data

Static data

Text

Reserved

Assembly or C/C++

* Write Efficient Code
* Secure Application

* Multi-Threaded and Complex Program to run multiple devices (OS)
* Real-Time Applications for Real world Problems

Assembly Programming

* Unlike HLL like C or Java, assembly does not have & g)
variables as you know and love them W
~ More primitive, closer what simple hardware can directly
5L|I:|F|-D'rt ! r :‘kﬁﬂl:n':f]:::_'; ['.l:.'rgr.ml j
+ Assembly operands are objects called registers Bl
_ :}:?‘g'ti:eh{ie IF']L;Td?Earrgf SpE{:lal plﬂfEﬂ tﬂ hﬂEd "I.I"lah.l'E5H bljllt d][E{;tI"f Ejbjm:: trnuchlgif'lflmgf m-z‘u;ll.llr.:ﬂ Ehmr'_r ““Mh;f?tﬁl:fmw muduh.,ﬂ
~ Qperations can only be performed on these! e
+ Benefit: Since registers are directly in hardware, they are (e E——— |

very fast (faster than 1 ns - light travels 1 foot in 1 ns!!!) e

—LEER. “—

RISCV GCC Assembler

.section .data # Data section (if needed)
.section .text # Code section
.globl _start # Define global start label
_start:
li s3, 0x1121 # Load immediate value 0x1121 into s3
li rs2, 0x22233 # Load immediate value 0x22233 into rs2
add rd, rsl, rs2 # Add rs1 and rs2, store the result in rd
sw rd, Ox1(zero) # Store the value in rd to memory address 0x00000001
] _exit # Jump to exit (optional, depending on context)
_exit:

nop # No operation (placeholder for termination)

Introduction to C Programming

Standard C (often just called "C") is a programming languages
used to write software, but they differ in their target environments,
constraints, and some aspects of functionality.

C is one of the most widely used languages for programming
systems based on the RISC-V architecture. It provides a high-level
abstraction while still allowing for low-level hardware
manipulation. Here's a detailed introduction to programming in C
for RISC-V.

Standard C is sufficient for most use cases, especially when
working with a RISC-V system that supports an operating system.

Specialized C (hardware-specific code, inline assembly, and
custom startup code) is required for bare-metal programming or
hardware accelerators.

Introduction to Embedded C Programming

Target Environment

A structural and programming language used by An extension of C primarily used to develop
developers to create desktop-based applications microcontroller based applications.

Memory Constraint

Typically used on systems with more resources. Often used in environments with limited resources
(memory, processing power).

Hardware Interaction

Hardware interactions are managed by operating system Interacts directly with hardware components, such as
or libraries, unless used in system-level programming. registers, I/O ports, and peripheral devices.

Libraries and Extensions

Uses standard libraries provided by the C standard Uses specialized libraries and extensions for embedded
library (e.g., stdio.h, stdlib.h) and other platform-specific systems (e.g., specific APIs for handling hardware
or third-party libraries. interrupts, timers, and serial communication).

Introduction to Embedded C Programming

Development Tools

Typically uses general-purpose IDEs (e.g., Visual Studio, Specific Integrated Development Environments (IDEs),
Eclipse) and compilers (e.g., GCC, Clang). compilers, and debuggers designed for embedded system
development (e.g., Keil, IAR, MPLAB).

Real-Time Constraint

It can be used in real-time applications, but it is not Often used in real-time systems where meeting timing
inherently designed for real-time constraints and may constraints is crucial. It may include real-time operating
rely on external real-time extensions or operating systems (RTOS) or bare-metal programming.
systems.

Code Portability
Code is generally more portable across different Code is often less portable due to hardware-specific
platforms, adhering to the C standard. dependencies and optimizations. Porting code between

different embedded platforms can be challenging.

Il example.c * The compiler generates an
int global_var = 10; object file in ELF format. This
'”t,mf’l"”o |{ s object file contains machine
ntlocal_var = S, code, data, and metadata,
Int result = global _var + —ed into diff A
ocal var organized into differen
return result: sections like .text
} (code), .data (initialized data),

and .bss (uninitialized data).

riscv32-unknown-elf-gcc example.o -0 example

Programming RISC-V

* Problem

* Write it in your own words

* Make Pseudo Code

* Create Control and Data-flow Graph
* Program (C/C++, ASM)

* Debug

* Profile

* Optimize/Fine Tune

* Execute

* Test

Flowchar

f=g+h

Hazards

* Data Hazards: Instructions are waiting for
data from other instructions. H NS

* Control Hazards: Changes in instruction flow
cause delays. Y Y l

* Structural Hazards: Limited hardware
resources cause delays.

Testing and Executing the Code

RIPES

https://ripes.me/
https://github.com/mortbopet/Ripes/releases/download/v2.2.6/Ripes-v2.2.6-win-x86_64.zip

Next:

RISCV Micro Controller

RISCV Simulator and Emulators
RISCV Single Board Computer

https://ripes.me/

Programmer and Debugger

* Programmer or debugger tool to flash the firmware into the
RISCV System.

3 Instruction Memory: The code from the .text section is loaded
Into the system instruction memory.

} Data Memory: The initialized data from the .data section is
loaded into the system data memory.

* Target Hardware Architecture:
} Processor and Specifications:
} Program Memory and Data Memory Size:
} Peripherals and Components

* Memory Mapping
* Software Development

3 GCC Compiler: Compiler: riscv32-unknown-elf-gcc or riscv64-unknown-elf-gcc.
} Debugger: GDB with RISC-V support.

3 ELF Loader: OpenOCD or RISC-V Proxy Kernel.
Stress Checking and Profiling Tools for RISC-V:

I RISC-V Performance Monitor or Perf.

SW Development Environment

Editor Keil™ uVision®

Start

14

Source code

direction register

LDR R1, =GPIO_PORTD _DIR_R
LDR RO, [R1]

ORR RO, RO, #OXOF

make PD3-0 output

STR RO, [R1]

&% Build Target (F7)

Object code

0x00000142 4912
0x00000144 6808
0x00000146 FO40000F
OX0000014A 6008

A A

Addrless Dlata

Simulated Processor 1
Start Microcontroller
Debug
Session Memory
I/0
111
A
I{?al Processor
Microcontroller
Download
M
@ Start cmory
Debug
Session e,
1171 "

Compiler Options

* riscv32-unknown-elf-gcc //

-march=rv32imac // Architecture and ISA Extensions:

-mabi=ilp32 // ABI (Application Binary Interface: Int, long, pointer):

-0O2 /I Optimization Levels:

-mtune=sifive-e31 // Code Genartion for specific RISCV core

-0 // Debugging and Profiling -pg

mhard-float // Floating Point Options: Hard/Soft Floting point:
*-T linker_script.ld Il -T. Specify a linker script.

-I/path/to/include /I Include Paths and Libraries

-L/path/to/li /l

-0 output.elf // Output file

source.c // source file

-Im /I -Im (math library)

* -funroll-loops // Loop Unrolling option

C code for testing

void main(void) {
iInta=>5, b =10;
INt result = a + b;

}

Steps: Code Compilation to Execution

riscv32-un
riscv32-un
riscv32-un

riIscv32-un
INnstr.mem

Known-e
Known-e

Known-e

Known-e

f-gcc -march=rv32i -S -o riscv.s ./code.c
f-as -march=rv32I -0 riscv.o ./riIscv.s
f-ld -0 riscv ./riscv.o

f-objcopy -O binary --only-section=.text riscv

riscv32-unknown-elf-objcopy -O binary --only-section=.data riscv

data.mem

riscv32-unknown-elf-objdump -D -b binary -m riscv:rv32i instr. mem

with open("instr.mem", "rb") as file:
content = file.read()
hex_data = content.nex() # Convert the binary content to hexadecimal

Split the hexadecimal data into 4-byte (32-bit) chunks
Instructions = [hex_datali:i+8] for i in range(0, len(hex_data), 8)]

Reverse the byte order for each instruction (little-endian to big-endian)

for instruction in instructions:
Reverse the byte order by grouping the hex string in chunks of 2 (1 byte) and reversing the
order
big_endian_instruction = ".join([instruction[j:j+2] for j in range(0, len(instruction), 2)][::-1])
print(big_endian_instruction)

130101fe
232e8100
13040102
93075000
2326f4fe
9307a000
2324f4fe
0327c4fe
832784fe
b307f700
2322f4fe
6f000000
130101ff
23261100
23248100
13040101
17110000
13014101
eff09ffb
6f000000

Debugging

* # Compile with debugging information

* riscv64-unknown-elf-gcc -march=rv64gc -mabi=Ip64d -g -0 my_program
Jfor_loop.c

Start GDB and load program
* riscve4-unknown-elf-gdb my program
* # Run program in GDB
* (gdb) target sim
} (gdb) break linenumber
b (gdb) print variable_name

Profiling
Compile for performance analysis with perf
riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
Run program with QEMU and collect profiling data
gemu-riscv32 -cpu rv32, my_program -perf my_ program
Analyze profiling data with perf

// Not yet configured in cluster

Stress Testing

riscv32-unknown-elf-gcc -march=rv32i -0 stress-ng stress-ng.c
Run stress tests with stress-ng

gemu-riscv32 -L /path/to/riscv/rootfs ./stress-ng --cpu 4 --i0 2 --vm 2 --vm-
bytes 128M --timeout 60s

Custom Stress Checking
riscv32-unknown-elf-gcc -march=rv32i -0 stress _test ./stress_test.c
Run custom stress test program

gemu-riscv32 ./stress_test

Performance Analysis

* riscv32-unknown-elf-gcc -march=rv32i -0 my_program ./code.c

* gemu-riscv32 -L /path/to/riscv/rootfs valgrind --
tool=cachegrind ./my_program

* # Run program with QEMU for performance analysis

* gemu-riscv32 -d in_asm,cpu ./my_program > gemu_log.txt
* # Analyze QEMU log

* grep -E 'IN:|CPU:|Cycle:' gemu_log.txt

Testing Spike

lopt/riscv-gnu32/bin/spike --isa=RV32IMAC -d /opt/riscv/riscv32-unknown-elf/bin/pk ./heap32
until reg 0 pc 0x1000 # Stop execution when program counter of core 0 reaches 0x1000
mem 0 0x80000000 # View memory content at address 0x80000000 for core 0

freg O fO # Display floating-point register fO for core O

run 1000 # Resume execution for 1000 instructions

reg O # View all registers for core O

pc O # View the program counter of core O

until pc 0 0x1000 # Stop execution when PC of core 0 reaches address 0x1000

while reg 0 sp 0x80000000 # Continue running while stack pointer (sp) of core 0 is 0x80000000
dump 0x80000000 0x80001000 # Dump memory from address 0x80000000 to 0x80001000
quit

mtime

mtimecmp O

QEMU Debuging

* gemu-system-riscv32 -gdb tcp::1234 -S -kernel ./hello32.0

* riscv32-unknown-elf-gdb ./hello32.0 #Sperate window open

* Debug Commands

* (gdb) target remote :1234 # Connect to the QEMU GDB server

(gdb) load # Load the binary into QEMU

(gdb) b main # Set a breakpoint at the main function

(gdb) c # Continue execution until the breakpoint is hit
(gdb) info reg # Display registers

(gdb) step # Step through code line by line

(gdb) next # Step over functions

(gdb) continue # Continue execution until the next breakpoint

(gdb) quit # Exit GDB

Profiling QEMU

* gemu-system-riscv32 -d exec,int -kernel ./hello32.0

* perf record -e cycles -a -- gemu-system-riscv32 -kernel
/hello32.0

* perf report

RISC-V Computer Architecture Course Tasks: By completing these tasks, you'll gain hands-on
experience in programming, designing, and testing a RISC-V processor, bridging the gap
between theoretical knowledge and practical application.

Task 1. Programming RISC-V Using Assembly
Language and Ripes Simulator

Write RISC-V programs in Assembly language.

Simulate the Assembly code using the Ripes
Simulator to understand the execution flow.

Task 2: Developing a RISC-V Processor with Custom
ISA in Verilog

Design the Processor

Implement a RISC-V processor in Verilog that
supports at least 20 instructions from the RISC-V
ISA.

Test the Processor

Write manual machine code corresponding to
your implemented instructions.

Compare the results of executing machine code
against Assembly-level output to verify functionality.

Task 3: Programming Your RISC-V Processor Using a C Compiler

Write a Simple C Program

Develop a basic C program for the RISC-V architecture (e.g., arithmetic operations or loops).
Convert C Code to Assembly

Compile the C code to generate Assembly code using a RISC-V toolchain (e.g., GCC or LLVM).
Generate an ELF File

Produce an ELF (Executable and Linkable Format) file as part of the compilation process.
Extract Program and Data Code

Extract the program (instruction code) and data sections from the ELF file.
Integrate Code with Verilog Design

Load the extracted program and data into the memory system of your Verilog-based RISC-V processor.
Perform Simulation

Simulate the processor with the integrated program and data.

Observe the processor’s behavior and verify correctness.

Task 4: Documentation and Understanding
Write a Report
Document the entire process, including implementation, testing, and results.
Highlight challenges, solutions, and observations.
Prepare for Viva
Gain a deep understanding of all tasks for oral examination.
Be prepared to explain your processor design, testing methodology, and results in detalil

	Slide 1
	Slide 2
	Requirements: Basic and Complex
	Instruction Set Architecture
	Processor Memory Map: Hardware and Software Placement
	Hardware Placement of Memory Map
	Software: Memory Map
	System Schematic and Memory Mapping
	Define Memory Address
	Computer Programming and Memory Layout
	𝐓𝐞𝐱𝐭 (𝐂𝐨𝐝𝐞), 𝐃𝐚𝐭𝐚 and BSS 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
	Heap and Stack Segments
	Slide 13
	Slide 14
	Linker Script: Program and Data Memory Allocation
	Assembly or C/C++
	Assembly Programming
	RISCV GCC Assembler
	Introduction to C Programming
	Introduction to Embedded C Programming
	Introduction to Embedded C Programming (2)
	Slide 22
	Programming RISC-V
	Hazards
	Testing and Executing the Code
	Programmer and Debugger
	Slide 27
	Slide 28
	Compiler Options
	Slide 30
	Steps: Code Compilation to Execution
	Slide 32
	Slide 33
	Debugging
	Profiling
	Stress Testing
	Performance Analysis
	Testing Spike
	QEMU Debuging
	Profiling QEMU
	RISC-V Computer Architecture Course Tasks: By completing these

