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 Range of Applications



Requirements: Basic and Complex



Instruction Set Architecture

Instruction Set Architecture 
(ISA) serves as the interface 
between software (e.g., high-level 
programming languages) and 
hardware (digital systems like 
CPUs or processors). 
It defines the set of instructions 
that a processor can execute, 
along with the corresponding 
machine-level operations.



Processor Memory Map: 
Hardware and Software Placement

 The processor's memory map is critical for defining how different memory regions 
and peripherals are addressed. It resides in both hardware and software, serving 
distinct roles in each domain.



Hardware Placement of Memory Map

Placement in HDL:
   Found in the memory controller module or bus arbiter 
module. 

Implements logic for decoding incoming address lines 
and routing requests to the correct memory region. 

In hardware, the memory map is implemented as part of the 
address decoding logic, typically located within the memory 
controller module or the interconnect/bus fabric.
Address Decoding Logic:
   Encodes address ranges in comparators or lookup tables.
   Routes requests based on address ranges.



Software: Memory Map

In software, the memory map is defined in header files, configuration files, or linker 
scripts for firmware and OS use. This ensures that software developers can access 
hardware components and memory regions using predefined constants.
Header Files: 

Define base addresses and address ranges as macros or constants. 
Example (C Header File):

#define SPM_BASE_ADDR   0x00000000  // Scratchpad Memory Base
#define MAIN_MEM_ADDR   0x10000000  // Main Memory Base
#define CACHE_ADDR      0x00010000  // Cache Bas

Linker Script: 
Specifies physical memory layout and assigns sections for code and 
data. 
Example (Linker Script):
MEMORY
{
    SPM (rwx) : ORIGIN = 0x00000000, LENGTH = 64K
    MAIN_MEM (rwx) : ORIGIN = 0x10000000, LENGTH = 512M
}
SECTIONS
{
    .text : { *(.text) } > SPM
    .data : { *(.data) } > MAIN_MEM
}



System Schematic
and Memory Mapping



Define Memory Address



Computer Programming and Memory Layout

 Understanding C memory layout is crucial for debugging, optimizing 
performance, security and interfacing with low-level systems.

  𝐓𝐞𝐱𝐭 ( ) :𝐂𝐨𝐝𝐞 𝐒𝐞𝐠𝐦𝐞𝐧𝐭
  𝐃𝐚𝐭𝐚 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
  𝐁𝐒𝐒 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
  𝐇𝐞𝐚𝐩 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
  𝐒𝐭𝐚𝐜𝐤 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:



  𝐓𝐞𝐱𝐭 ( ),  and BSS :𝐂𝐨𝐝𝐞 𝐃𝐚𝐭𝐚 𝐒𝐞𝐠𝐦𝐞𝐧𝐭
 The text segment contains the executable code of the program. It is read-only and holds the instructions 

for the program.
 The data segment contains initialized global and static variables. In the example code, global_data is an 

initialized global variable with value 10.
 The BSS (Block Started by Symbol) segment contains uninitialized global and static variables. The BSS 

segment is set to zero during program startup. In the example code, global_bss variable will be added to 
the bss section by linker. 

 The Text, Data, and BSS segments collectively form the static part of the program that contains fixed-
sized instructions and data that persists throughout its execution. These should be kept in a non-volatile 
memory to ensure successful execution of code following a power cycle.

 You can use the size utility that comes with the compiler to get the size of the executable. Below is the 
output for the example code:
---------------------------------------------------------------------------

  text     data    bss       dec     hex      filename

  1585   600     8        2193    891      main.out



Heap and Stack Segments
  𝐇𝐞𝐚𝐩 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 The heap segment is used for dynamic memory allocation during the program's runtime. In the 

example, we allocate memory for an integer using malloc(), and heap_var points to the newly 
allocated memory location.

  It's important to free the allocated memory after it is no longer needed.
 Over time, repeated memory allocation without freeing memory can cause the program's memory 

usage to grow unnecessarily leading to poor performance and runtime allocation failures.

  𝐒𝐭𝐚𝐜𝐤 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 The stack segment is used for managing function calls, local variables, and function call frames. 

In the example, stack_var is a local variable that will be allotted on the stack during the execution 
of the main() function.

 The stack and heap memory share the dynamic memory area of the program. The stack typically 
starts from the end address of the memory and grows downward, while the heap starts from the 
end of the BSS segment.





 Instruction Section: Contains the compiled 
machine code instructions (text section).

 Data Section: Contains initialized data 
(data section).

  The linker combines the code and data 
sections, resolves symbols, and sets up 
memory addresses.

 The linker script defines how different 
sections are mapped into the memory of 
the microcontroller. 

 It specifies memory regions and assigns 
addresses to different sections of the code 
and data.

 MEMORY
 {
     ROM (rx) : ORIGIN = 0x08000000, LENGTH = 512K
     RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 64K
 }
  
 SECTIONS
 {
     .text : {
         *(.text)
     } > ROM
  
     .data : {
         *(.data)
     } > RAM
 }



The high addresses are the top of the figure and the low addresses 

are the bottom. 

The stack pointer (sp) starts at BFFF FFF0 hex and grows down 

toward the Static data. 

The text (program code) starts at 0001 0000hex and includes the 

statically-linked libraries.  

The Static data starts immediately above the text region; in this 

example, we assume that address is 1000 0000hex . 

Dynamic data, allocated in C by malloc(), is just above the Static data. 

Called the heap, it grows upward toward the stack. It includes the 

dynamically-linked libraries.

Linker Script: Program and Data Memory Allocation 



Assembly or C/C++
 Write Efficient Code
 Secure Application
 Multi-Threaded and Complex Program to run multiple devices (OS)
 Real-Time Applications for Real world Problems



Assembly Programming



RISCV GCC Assembler
     .section .data                 # Data section (if needed)
     .section .text                  # Code section
    .globl _start                     # Define global start label

_start:
    li s3, 0x1121                   # Load immediate value 0x1121 into s3
    li rs2, 0x22233                # Load immediate value 0x22233 into rs2
    add rd, rs1, rs2               # Add rs1 and rs2, store the result in rd
    sw rd, 0x1(zero)             # Store the value in rd to memory address 0x00000001
    j _exit                             # Jump to exit (optional, depending on context)

_exit:
    nop                          # No operation (placeholder for termination)



Introduction to C Programming

Standard C (often just called "C") is a programming languages 
used to write software, but they differ in their target environments, 
constraints, and some aspects of functionality.
C is one of the most widely used languages for programming 
systems based on the RISC-V architecture. It provides a high-level 
abstraction while still allowing for low-level hardware 
manipulation. Here's a detailed introduction to programming in C 
for RISC-V.
Standard C is sufficient for most use cases, especially when 
working with a RISC-V system that supports an operating system.
Specialized C (hardware-specific code, inline assembly, and 
custom startup code) is required for bare-metal programming or 
hardware accelerators.



Introduction to Embedded C Programming

A structural and programming language used by 
developers to create desktop-based applications

Target Environment
An extension of C primarily used to develop 
microcontroller based applications.

Typically used on systems with more resources.
Memory Constraint

Often used in environments with limited resources 
(memory, processing power).

Hardware interactions are managed by operating system 
or libraries, unless used in system-level programming.

Hardware Interaction
Interacts directly with hardware components, such as 
registers, I/O ports, and peripheral devices.

Uses standard libraries provided by the C standard 
library (e.g., stdio.h, stdlib.h) and other platform-specific 
or third-party libraries.

Libraries and Extensions
Uses specialized libraries and extensions for embedded 
systems (e.g., specific APIs for handling hardware 
interrupts, timers, and serial communication).

VS



Introduction to Embedded C Programming

Typically uses general-purpose IDEs (e.g., Visual Studio, 
Eclipse) and compilers (e.g., GCC, Clang).

Development Tools
Specific Integrated Development Environments (IDEs), 
compilers, and debuggers designed for embedded system 
development (e.g., Keil, IAR, MPLAB).

It can be used in real-time applications, but it is not 
inherently designed for real-time constraints and may 
rely on external real-time extensions or operating 
systems.

Real-Time Constraint
Often used in real-time systems where meeting timing 
constraints is crucial. It may include real-time operating 
systems (RTOS) or bare-metal programming.

Code is generally more portable across different 
platforms, adhering to the C standard.

Code Portability
Code is often less portable due to hardware-specific 
dependencies and optimizations. Porting code between 
different embedded platforms can be challenging.

VS



// example.c
int global_var = 10;
int main() {
    int local_var = 5;
    int result = global_var + 
local_var;
    return result;
}

riscv32-unknown-elf-gcc example.o -o example

 The compiler generates an 
object file in ELF format. This 
object file contains machine 
code, data, and metadata, 
organized into different 
sections like .text 
(code), .data (initialized data), 
and .bss (uninitialized data).



Programming RISC-V

 Problem
 Write it in your own words
 Make Pseudo Code
 Create Control and Data-flow Graph
 Program (C/C++, ASM)
 Debug
 Profile
 Optimize/Fine Tune
 Execute
 Test

Flowchar
t



Hazards
 Data Hazards: Instructions are waiting for 

data from other instructions.
 Control Hazards: Changes in instruction flow 

cause delays.
 Structural Hazards: Limited hardware 

resources cause delays.



Testing and Executing the Code
RIPES
https://ripes.me/
https://github.com/mortbopet/Ripes/releases/download/v2.2.6/Ripes-v2.2.6-win-x86_64.zip

Next: 
RISCV Micro Controller
RISCV Simulator and Emulators
RISCV Single Board Computer
 

https://ripes.me/


Programmer and Debugger 

 Programmer or debugger tool to flash the firmware into the 
RISCV System.
 Instruction Memory: The code from the .text section is loaded 

into the system instruction memory.
 Data Memory: The initialized data from the .data section is 

loaded into the system data memory.



 Target Hardware Architecture:
 Processor and Specifications:
 Program Memory and Data Memory Size:
 Peripherals and Components

 Memory Mapping
 Software Development 

 GCC Compiler: Compiler: riscv32-unknown-elf-gcc or riscv64-unknown-elf-gcc.
 Debugger: GDB with RISC-V support.
 ELF Loader: OpenOCD or RISC-V Proxy Kernel.

Stress Checking and Profiling Tools for RISC-V:
 RISC-V Performance Monitor or Perf.



SW Development Environment

0x00000142 4912
0x00000144 6808
0x00000146 F040000F
0x0000014A 6008

Start
; direction register
  LDR R1,=GPIO_PORTD_DIR_R
  LDR R0,[R1]
  ORR R0,R0,#0x0F
; make PD3-0 output
  STR R0, [R1]

Source code

Build Target (F7)

Download
Object code

Processor

Memory

I/O

Simulated
Microcontroller

Address   Data

Editor KeilTM uVision®

Processor

Memory

I/O

Real
Microcontroller

Start
Debug
Session

Start
Debug
Session



Compiler Options
 riscv32-unknown-elf-gcc //

-march=rv32imac          // Architecture and ISA Extensions:
-mabi=ilp32                   // ABI (Application Binary Interface: Int, long, pointer):
-O2                     // Optimization Levels:
-mtune=sifive-e31            // Code Genartion for specific RISCV core
-g                   // Debugging and Profiling -pg
 mhard-float              // Floating Point Options: Hard/Soft Floting point:

 -T linker_script.ld            // -T: Specify a linker script.
-I/path/to/include             //  Include Paths and Libraries
-L/path/to/li             // 
-o output.elf              // Output file
source.c               // source file
-lm                    //  -lm (math library)

 -funroll-loops                   // Loop Unrolling option



C code for testing

void main(void) {
    int a = 5, b = 10;
    int result = a + b;
  }



Steps: Code Compilation to Execution
 riscv32-unknown-elf-gcc -march=rv32i -S -o riscv.s ./code.c
 riscv32-unknown-elf-as -march=rv32i -o riscv.o ./riscv.s 
 riscv32-unknown-elf-ld -o riscv ./riscv.o 
 riscv32-unknown-elf-objcopy -O binary --only-section=.text riscv 

instr.mem
 riscv32-unknown-elf-objcopy -O binary --only-section=.data riscv 

data.mem
 riscv32-unknown-elf-objdump -D -b binary -m riscv:rv32i instr.mem



with open("instr.mem", "rb") as file:
    content = file.read()
    hex_data = content.hex()  # Convert the binary content to hexadecimal

    # Split the hexadecimal data into 4-byte (32-bit) chunks
    instructions = [hex_data[i:i+8] for i in range(0, len(hex_data), 8)]
    
    # Reverse the byte order for each instruction (little-endian to big-endian)
    for instruction in instructions:
        # Reverse the byte order by grouping the hex string in chunks of 2 (1 byte) and reversing the 
order
        big_endian_instruction = ''.join([instruction[j:j+2] for j in range(0, len(instruction), 2)][::-1])
        print(big_endian_instruction)



 130101fe
 232e8100
 13040102
 93075000
 2326f4fe
 9307a000
 2324f4fe
 0327c4fe
 832784fe
 b307f700
 2322f4fe
 6f000000
 130101ff
 23261100
 23248100
 13040101
 17110000
 13014101
 eff09ffb
 6f000000



Debugging
 # Compile with debugging information
 riscv64-unknown-elf-gcc -march=rv64gc -mabi=lp64d -g -o my_program 

./for_loop.c

# Start GDB and load program
 riscv64-unknown-elf-gdb my_program
 # Run program in GDB
 (gdb) target sim

 (gdb) break linenumber
 (gdb) print variable_name



Profiling
 # Compile for performance analysis with perf
 riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
 # Run program with QEMU and collect profiling data
 qemu-riscv32 -cpu rv32, my_program -perf my_program
 # Analyze profiling data with perf
 // Not yet configured in cluster



Stress Testing
 riscv32-unknown-elf-gcc -march=rv32i -o stress-ng stress-ng.c
 # Run stress tests with stress-ng
 qemu-riscv32 -L /path/to/riscv/rootfs ./stress-ng --cpu 4 --io 2 --vm 2 --vm-

bytes 128M --timeout 60s
 Custom Stress Checking 
 riscv32-unknown-elf-gcc -march=rv32i -o stress_test ./stress_test.c
 # Run custom stress test program
 qemu-riscv32 ./stress_test



Performance Analysis
 riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
 qemu-riscv32 -L /path/to/riscv/rootfs valgrind --

tool=cachegrind ./my_program
 # Run program with QEMU for performance analysis
 qemu-riscv32 -d in_asm,cpu ./my_program > qemu_log.txt
 # Analyze QEMU log
 grep -E 'IN:|CPU:|Cycle:' qemu_log.txt



Testing Spike
/opt/riscv-gnu32/bin/spike --isa=RV32IMAC -d /opt/riscv/riscv32-unknown-elf/bin/pk ./heap32
until reg 0 pc 0x1000  # Stop execution when program counter of core 0 reaches 0x1000
mem 0 0x80000000  # View memory content at address 0x80000000 for core 0
freg 0 f0  # Display floating-point register f0 for core 0
run 1000  # Resume execution for 1000 instructions
reg 0  # View all registers for core 0
pc 0    # View the program counter of core 0
until pc 0 0x1000  # Stop execution when PC of core 0 reaches address 0x1000
while reg 0 sp 0x80000000  # Continue running while stack pointer (sp) of core 0 is 0x80000000
dump 0x80000000 0x80001000  # Dump memory from address 0x80000000 to 0x80001000
quit
mtime
mtimecmp 0



QEMU Debuging
 qemu-system-riscv32 -gdb tcp::1234 -S -kernel ./hello32.o
 riscv32-unknown-elf-gdb ./hello32.o #Sperate window open
 Debug Commands
 (gdb) target remote :1234   # Connect to the QEMU GDB server
(gdb) load                  # Load the binary into QEMU
(gdb) b main                # Set a breakpoint at the main function
(gdb) c                     # Continue execution until the breakpoint is hit
(gdb) info reg              # Display registers
(gdb) step                  # Step through code line by line
(gdb) next                  # Step over functions
(gdb) continue              # Continue execution until the next breakpoint
(gdb) quit                  # Exit GDB



Profiling QEMU
 qemu-system-riscv32 -d exec,int -kernel ./hello32.o
 perf record -e cycles -a -- qemu-system-riscv32 -kernel 

./hello32.o
 perf report



RISC-V Computer Architecture Course Tasks: By completing these tasks, you'll gain hands-on 
experience in programming, designing, and testing a RISC-V processor, bridging the gap 
between theoretical knowledge and practical application.

Task 1: Programming RISC-V Using Assembly 
Language and Ripes Simulator
    Write RISC-V programs in Assembly language.
    Simulate the Assembly code using the Ripes 
Simulator to understand the execution flow.

Task 2: Developing a RISC-V Processor with Custom 
ISA in Verilog
    Design the Processor
        Implement a RISC-V processor in Verilog that 
supports at least 20 instructions from the RISC-V 
ISA.
    Test the Processor
        Write manual machine code corresponding to 
your implemented instructions.
        Compare the results of executing machine code 
against Assembly-level output to verify functionality.

Task 3: Programming Your RISC-V Processor Using a C Compiler
    Write a Simple C Program
        Develop a basic C program for the RISC-V architecture (e.g., arithmetic operations or loops).
    Convert C Code to Assembly
        Compile the C code to generate Assembly code using a RISC-V toolchain (e.g., GCC or LLVM).
    Generate an ELF File
        Produce an ELF (Executable and Linkable Format) file as part of the compilation process.
    Extract Program and Data Code
        Extract the program (instruction code) and data sections from the ELF file.
    Integrate Code with Verilog Design
        Load the extracted program and data into the memory system of your Verilog-based RISC-V processor.
    Perform Simulation
        Simulate the processor with the integrated program and data.
        Observe the processor’s behavior and verify correctness.

Task 4: Documentation and Understanding
    Write a Report
        Document the entire process, including implementation, testing, and results.
        Highlight challenges, solutions, and observations.
    Prepare for Viva
        Gain a deep understanding of all tasks for oral examination.
        Be prepared to explain your processor design, testing methodology, and results in detail


	Slide 1
	Slide 2
	Requirements: Basic and Complex
	Instruction Set Architecture
	Processor Memory Map: Hardware and Software Placement
	Hardware Placement of Memory Map
	Software: Memory Map
	System Schematic and Memory Mapping
	Define Memory Address
	Computer Programming and Memory Layout
	𝐓𝐞𝐱𝐭 (𝐂𝐨𝐝𝐞), 𝐃𝐚𝐭𝐚 and BSS 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
	Heap and Stack Segments
	Slide 13
	Slide 14
	Linker Script: Program and Data Memory Allocation
	Assembly or C/C++
	Assembly Programming
	RISCV GCC Assembler
	Introduction to C Programming
	Introduction to Embedded C Programming
	Introduction to Embedded C Programming (2)
	Slide 22
	Programming RISC-V
	Hazards
	Testing and Executing the Code
	Programmer and Debugger
	Slide 27
	Slide 28
	Compiler Options
	Slide 30
	Steps: Code Compilation to Execution
	Slide 32
	Slide 33
	Debugging
	Profiling
	Stress Testing
	Performance Analysis
	Testing Spike
	QEMU Debuging
	Profiling QEMU
	RISC-V Computer Architecture Course Tasks: By completing these

