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Introduction

® ADC = Analog-Digital-Converter

® Conversion of audio signals (mobile micro,
digital music records, ...)

® Conversion of video signals (cameras,
frame grabber, ...)

® Measured value acquisition (temperature,
pressure, luminance, ...)
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ADC - Scheme

Sample
& Hold |

f

f sample

® Analog input can be voltage or current (in the following
only voltage)

® Analog input can be positive or negative (in the following
only positive
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Figure 3 Interfaced with variety of SBC



Stages of DAS

® Signal Conditioning
To improve the quality of signals in terms of

amplification, linearization, compensation,
filtering, and attenuation.

B Buffering

B Amplification
® Multiplexing
" ADC

Multi
Sensor

analog
Input

—
>

—

Signal
Conditioning

VY

Buffering
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Multiple
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2. Characteristic Values of ADCs

® \Which values characterize an ADC?
B \What kind of errors exist?
® What is aliasing?

Analog Digital Converter
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ADC Values

® Resolution N: number of discrete values to represent the

analog values (in Bit)
8 Bit = 28 = 256 quantization level,
10 Bit = 210 = 1024 quantization level

® Reference voltage V,.: Analog input signal V;, is related
to digital output signal D, through V. with:

\/,'n = Vref' (D02'1 + D12'2 + ...+ DN_12'N)

Example: N = 3 Bit, Ve = 1V, Dy = ‘011
=>V, =1V - (22 +23) =1V - (0.25 + 0.125) = 0.375V

D.,=DD,...D,,

— ADC ——

ref T
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ADC Values cont'd

" V,.ss . Minimum measurable voltage difference in
ideal case (LSB — least significant Bit)
Viss = Vier/ 2N
Vin = Visg (Do2N-1 + D, 2N2 + ... + D,;20)
Example: N = 3 Bit, Vs = 1V, D, = ‘011’
=> Vs = 1V /23 =0.125V
=>V,,=0.125V - ( 21 + 20) = 0.125V - 3 = 0.375V
® AV: Voltage difference between two logic level
Ideal: all AV = V5

" Vs : Difference between highest and lowest
measurable voltages (FSR - full scale range)

Analog Digital Converter 13



ADC Values cont'd

® SNR: Signal to Noise Ratio
Ratio of signal power to noise power

Psignal
Pnoise
® ENOB: Effective Number of Bits

Effective resolution of ADC under observance of all noise and
distortions

SNR _ B SNR| =101
— ’ ‘db —1V10g

noise

SINAD (SlIgnal to Noise And Distortion) - ratio of fundamental
signal to the sum of all distortion and noise (DC term removed)

Comparison of SINAD of ideal and real ADC with same word
length

Analog Digital Converter
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Further ADC Values

Bandwidth: Maximum measurable frequency of the
Input signal

® Power dissipation
® Conversion Time: Time for conversion of an analog

value into a digital value (interesting in pipeline and
parallel structures)

Sampling rate (fs.,,): Rate at which new digital values
are sampled from the analog signal (also: sample

Errors: Quantization, offset, gain, INL, DNL, missing
codes, non-monotonicity...

- TTTTEEE——
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Offset Error

offset
A
111+ L
/7
1104 e
1014 //j//
C§ 1004 //j//
011__ ///'//
010+ //://’
001——/////
oo bt ¢ o
\/ref ﬁ‘/ref Z‘/ref \/in
8 8 8

® Parallel shift of the whole curve
® E.g. caused by difference in ground line voltages

Analog Digital Converter 18



Gain Error

gain
1111 T
110} e
101+ A
S 100 s
011+ 7~
0104 ,;5;'
001+ p#%
000 Mty
Ve Y, %y, Vin

® Corresponds to too small or to large but equal AV
® E.g. caused by too small or too large V.

Analog Digital Converter
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Differential Non-Linearity (DNL)

111+
110+
101+
100}
011
010

001+
OOO ./Fl/_ | | | | | | |

s
Vi 4y 7 7
8 8 ref

DOUt

n

® Deviation of AV from V, g value (in V, gg)
® Defined after removing of gain
® E.g. Caused by mismatch of the reference elements

Analog Digital Converter



Missing Codes

111+ —
110+
101
100 Missing Code
011
010}
001
000

DOUt

: >
V., 4 7 vV

n

®  Some bit combinations never appear
B QOccurs, if maximum DNL > 1 V, sz or maximum INL > 0.5 V, 55
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Non-Monotonicity

111+
110+
101+
100+
0114
0104
0014

D out

000

-
ef ﬂV 7 ‘/l
8 8 ref 8 ref

n

® [ ower conversion result for a higher input voltage
® Includes that same conversion may result from two separate

voltage ranges

Analog Digital Converter
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Aliasing

Measured data points
(sample rate: fsamp) Reconstructed
output signal

Input signal
(with fin)

® Too small sampling rate fs,,, (under-sampling) can lead
to aliasing ( = frequency of reconstructed signal is to low)

B Nyquist criterion:

fsamp More than two times higher than highest
frequency component £, of input signal: 7., > 2-f,

Analog Digital Converter 23



3. Nyquist-Rate ADCs

® How can Nyquist-rate ADCs be grouped?

"W
"W
"W
"W
"W
"W

nat is a dual slope ADC?

nat IS a successive approximation ADC?
nat Is an algorithmic ADC?

nat Is a flash ADC?

nat Is a pipelined ADC?

nat are the pros and cons of the

Nyquist-rate ADCs?

Analog Digital Converter 24



Nyquist-Rate ADCs

Sampling frequency fs,,, IS In the same range as
frequency f;, of input signal
Low-to-medium speed and high accuracy ADCs
Integrating
Medium speed and medium accuracy ADCs
Successive Approximation
Algorithmic
High speed and low-to-medium accuracy ADCs
Flash
Two-Level Flash
Pipelined

Analog Digital Converter
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Successive Approximation ADC

B Generate internal analog signal V.

® Compare Vp,, with input signal V,

" Modify Vp, by DoD;D....Dy.; until closest possible value
to V,, Is reached

S&H

V/a

> Logic

Dol Dli---.

DN-ll

DAC

< ref

Analog Digital Converter
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Successive Approximation ADC cont'd

Comparsion of V4 with

Vref

S&H

VA

ref

Analog Digital Converter
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Successive Approximation ADC cont'd

A 111
ZVref__ VD/A 110
8 1 ’ 101

l” 1 100
4
g 011
T 010
v
T 001
I I I .
1. 2. 3. final 000
Iterations result

P. Fischer, VLSI-Design - ADC und DAC, Uni Mannheim, 2005
N

Analog Digital Converter
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Successive Approx.: pros and cons

Low Area / Low Power

X High effort for DAC
x Early wrong decision leads to false result

Analog Digital Converter
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Algorithmic ADC

B Same idea as successive approximation ADC

® Instead of modifying V,.;s — doubling of error
voltage (V. Stays constant)

S&H

DOT DlT ... DN_lT

X2 |S&H

|
j%i » Shift register
g/‘ Vied4
< S2

® 'Vref/4
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Algorithmic ADC con't

Y

D:.=0

—

na

D.A.. Johns, K. Martin, Analog Integrated Circuit design, John Wiley & Sons, 1997
B

V =2V 3V d4b)

prd

o

Stop

\«
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Algorithmic ADC: pros and cons

Less analog circuitry than Succ. Approx.
ADC

Low Power / Low Area

x High effort for multiply-by-two gain amp

Analog Digital Converter
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Flash ADC

® V. connected with 2~

—— Over range comparators in parallel

Vier
R/Z% _n/

R § L
RS
RS
R g O
R § — ;/—o}
R § — ;/—o}
R __;//r__@:::}

® Comparators connected
to resistor string

B Thermometer code

B R/2-resistors on bottom
and top for 0.5 LSB
offset

2N-1) to N [ Ds
encoder

R/2

Analog Digital Converter 33



Some Flash ADC design issues

® |nput capacitive loading on V;,
® Switching noise if comparators switch at the
same time

® Resistors-string bowing by input currents of
bipolar comparators (if used)

B Bubble errors in the thermometer code based on
comparator’'s metastability

Analog Digital Converter 34



Flash ADC: pros and cons

Very fast

X High effort for the 2~ comparators
x High Area / High Power

% Recommended for 6-8 Bit and less

Analog Digital Converter
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Two-Level Flash ADC

® Conversion in two steps:

Determination of MSB-Bits and reconverting of
digital signal by DAC

Subtraction from V,, and determination of LSB-BIts

® F.e. 8-Bit-ADC: Flash: 28=256 comparators, Two-level:
2-24 = 32 comparators

gain amp

N/2-Bit N/2-Bit o N/2-Bit
X

Flash ADC YJJ/7 DAC - Flash ADC

MSB (Do ... Dn.1) LSB (Dns... Dy.1)

Analog Digital Converter 36



Two-Level Flash ADC: pros and cons

Same throughput as Flash ADC

Less area, less power, less capacity loading
than Flash ADC

Easy error-correction after first stage

Larger latency delay than Flash ADC
Design of N/2-Bit-DAC

% Currently most popular approach for high-
speed/medium accuracy ADCs

Analog Digital Converter
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Pipelined ADCs

B Extension of two-level architecture to multiple stages
(up-to 1 Bit per stage)

® Each stage is connected with CLK-signal
$  Pipelined conversion of subsequent input signals

$  First result after m CLK cycles (m - amount of
stages)

B Stages can be different

CLK
Vin,O Vin,l Vin,m-l
—» Stagel —p Stage2 —p = - - —p Stage m

I I I

Do — Dy.4 Dy — D1 Dk — Dn-1

Analog Digital Converter 38



CLK —

Pipelined ADCs: Scheme

in,i+1

Stage m

Vin,i » S&H »@_> oK
k-Bit k-Bit
ADC DAC
k Bits
Vin,l Vin,m-l
Vino—»| Stagel —» Stage2 —p =--- —Pp
CLK

Time Alignment & Digital Error Correction

Dol Dll - DN_ll

Analog Digital Converter
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Pipelined ADC: pros and cons

High throughput
Easy upgrade to higher resolutions

High demands on speed and accuracy on gain
amplifier

High CLK-frequency needed

High Power

Analog Digital Converter
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Oversampling (OS)

B Quantized signal is low-pass filtered to frequency f,

elimination of quantization noise greater than f,

A |H(f)]
Vi — X 1
—» — >
B H(f) T i fo ot
" "5 o 5

® QOversampling rate (OSR) is ratio of sampling frequency f
to Nyquist rafte of f,
OSR =

Analog Digital Converter 41



Sigma Delta ADC Example

Vin=1.2V ——+ N - — - o
P It L*

A =v, (t)- elt) > =(v, (t)- e(t)dc  Comparator

/ DAC
\  © V=25V
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http://www.beis.de/Elektronik/DeltaSigma/DeltaSigma_D.html
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Sigma Delta ADC: pros and cons

High resolution
Less effort for analog circuitry

X Low speed
X High CLK-frequency

$ Currently popular for audio applications

Analog Digital Converter
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5. Practical issues

® What are the performance limitations of
ADCs?

B \What are the differences between PCB-
and |C-designs?

® Are there hints to improve the ADC
design?

B \What are S&H circuits?

Analog Digital Converter 45



Performance Limitations

Analog circuit performance limited by:
® High-frequency behavior of applied components
® Noise
Crosstalk (analog —~ analog, analog - digital)
Power supply coupling
Thermal noise (white noise)
® Parasitic components (capacitances, inductivities)
® Wire delays

Analog Digital Converter 46



PCB- versus IC-Design

® PCB: Printed Circuit Board, IC: Integrated Circuit
B Noise in PCB-circuits much higher than in ICs

B Influences of parasitics In
nigher than in ICs

PCB-circuits much

B High-frequency behavior of PCB-circuits much

worse than of ICs
B \Wire delays in PCB much

higher than in ICs

W High accuracy, high speed, high
bandwidth ADCs only possible in ICs!

Analog Digital Converter 47



Some Hints for Mixed Signal Designs

For PCB and IC:

Keep ground lines separate!
Don’t overlap digital and analog signal wires!

RIGHT WROMG
DIGITAL + ANALDG + DIGITAL + AMALOG +
W W ™ — m.‘uu._u:ea._l_uu
T e ™ m—h —
DIGITAL - AMALDG - DIGITAL - ANALOG —

Mancini, Opamps for everyone, Texas Instr., 2002

® Don'’t overlap digital and analog supply wires!

Locate analog circuitry as close as possible to the /O
connections!

Choose right passive components for high-frequency
designs! (only PCB)

Analog Digital Converter
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Sample and Hold Circuits

B S&H circuits hold signal constant for conversion

® A sample and a hold device (mostly switch and
capacitor)

® Demands:

Small RC-settling-time (voltage over hold capacitor has to be
fast stable at < 1 LSB)

Exact switching point (else “aperture-error”)

Stable voltage over hold capacitor (else “droop error”)
No charge injection by the switch

Sampling
__SW'FCh _ _ Qutput
Analog Input | _ Signal

igna Capacitor

Analog Digital Converter 49



6. Low Power ADC Design

® What are the main components of power
dissipation?

® How can each component be reduced?

® What are the differences between power
and energy?

Analog Digital Converter 50



Power Dissipation

Two main components:

" Dynamic power dissipation (Pg,,)
Based on circuit’s activity
Square dependency on supply voltage Vpp?
Dependent on clock frequency £y
Dependent on capacitive load Ciyug
Dependent on switching probability a

9 Payn = Vpp? - Croag * fo - O
B Static power dissipation (Psaic)

Constant power dissipation even if circuit is inactive

Steady low-resistance connections between VDD und GND
(only in some circuit technologies like pseudo NMQOS)

Leakage (critical in technologies < 0.18 pum)

Analog Digital Converter 51



Low Power ADC Design

® Reduction of Vyp:
Highest influence on power (P ~ Vjp2?)
Sadly, delay increases (t, ~ 1/Vyp )
Sadly, loss of maximal amplitude - SNR goes down

Possible solutions:
" Different supply voltages within the design

" Dynamic change of V5, depending on required
performance

® Reduction of f:
Dynamic change of fy

T
Analog Digital Converter 52



Low Power ADC Design cont'd

® Reduction of C,,.,:

Crag depends on transistor count and transistor size,
wire count and wire length

Possible Solutions:
" Reduction of amount evaluating components

" Sizing of the design = all transistor get minimum
size to reach desired performance

" Intelligent placing and routing

Analog Digital Converter
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Low Power ADC Design cont'd

B Reduction of a:

Activity = possibility that a signal changes within one

clock cycle

Possible Solutions:

" Clock gating - no clock signal to inactive blocks

" High active signals connected to the end of blocks

]

L

=

]

" Asynchronous designs

L

]

L

Analog Digital Converter
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Which ADC for Low Power?

® If low speed: Dual Slope ADC

Area is independent of resolution
Less components
Problem: Counter

® If medium / high speed: mixed solutions
Popular: pipelined ADC with SAR
Pipelined solutions allows reduction of Vpp
Long latency but high throughput

Analog Digital Converter
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Power vs. Energy

® Power consumption in Watts
Power = voltage - current at a specific time point
Peak power:
" Determines power ground wiring designs and
Packaging limits
" Impacts of signal noise margin and reliability
analysis
® Energy consumption in Joules
Energy = power - delay (joules = watts * seconds)
Rate at which power is consumed over time

Lower energy humber means less power to perform a
computation at the same frequency
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Watts

Power vs. Energy cont'd

Power is height of curve

\ Approach 1

Approach 2

Watts|

time
Energy is area under curve

Approach 1

Approach 2

time

Analog Digital Converter
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Power vs. Energy: Simple Example

Vin  Vbp
I N Vin
\\j VDD
€L T T
1] NG L
T S e
—
Flash 2L-Flash

" Shaded blocks are ignored

" Dissipation for one input signal:

V,, | |(each gray block) | Delay Power | Energy
Flash 1V 1 YA 1ns 4 W 4 1]
2L-Flash | 1V 1 pA 2.5Nns 2 UW 51J
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Low Power ADCs Conclusion

® There Is no patent solution for low power ADCs!
® Every solution depends on the specific task.

® Before optimization analyze the problem:
Which resolution?
Which speed?
What are the constraints (area, energy, Vpp, Viy,...)?
Which technology can be used?

® Think also about unconventional solutions
(dynamic logic, asynchronous designs, ...).
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