Introduction to Data Acquisition System

Tassadaq Hussain Cheema Professor NAMAL University Pakistan Supercomputing Center Barcelona Supercomputing Center

Agenda

- Introduction
- DAS Blocks
- Characteristic Values of ADCs
- Nyquist-Rate ADCs
- Oversampling ADC
- Practical Issues
- Low Power ADC Design

Introduction

- ADC = Analog-Digital-Converter
- Conversion of audio signals (mobile micro, digital music records, ...)
- Conversion of video signals (cameras, frame grabber, ...)
- Measured value acquisition (temperature, pressure, luminance, ...)

ADC - Scheme

- Analog input can be voltage or current (in the following only voltage)
- Analog input can be positive or negative (in the following only positive)

\$1000 Per Second Calculations Per

DAS

Figure 3 Interfaced with variety of SBC

Stages of DAS

Signal Conditioning

- To improve the quality of signals in terms of amplification, linearization, compensation, filtering, and attenuation.
- Buffering
- Amplification
- Multiplexing

ADC

2. Characteristic Values of ADCs

- Which values characterize an ADC?
- What kind of errors exist?
- What is aliasing?

ADC Values

Resolution N: number of discrete values to represent the analog values (in Bit)

 \square 8 Bit = 2⁸ = 256 quantization level,

- \Box 10 Bit = 2¹⁰ = 1024 quantization level
- **Reference voltage** V_{ref} : Analog input signal V_{in} is related to digital output signal D_{out} through V_{ref} with:

$$V_{in} = V_{ref} \cdot (D_0 2^{-1} + D_1 2^{-2} + \dots + D_{N-1} 2^{-N})$$

□ Example: N = 3 Bit, $V_{ref} = 1V$, $D_{out} = '011'$ => $V_{in} = 1V \cdot (2^{-2} + 2^{-3}) = 1V \cdot (0.25 + 0.125) = 0.375V$

$$V_{in} \longrightarrow ADC \longrightarrow = D_0 D_1 \dots D_{N-1}$$
$$V_{ref} \longrightarrow$$

ADC Values cont'd

- V_{LSB} : Minimum measurable voltage difference in ideal case (LSB – least significant Bit)
 - $V_{LSB} = V_{ref} / 2^{N}$ $V_{in} = V_{LSB} (D_0 2^{N-1} + D_1 2^{N-2} + ... + D_{N-1} 2^0)$ Example: N = 3 Bit, $V_{ref} = 1V$, $D_{out} = '011'$ $V_{LSB} = 1V / 2^3 = 0.125V$ $V_{LSB} = 1V / 2^3 = 0.125V$
- ΔV : Voltage difference between two logic level \Box Ideal: all $\Delta V = V_{LSB}$
- V_{FSR} : Difference between highest and lowest measurable voltages (FSR – full scale range)

ADC Values cont'd

SNR: Signal to Noise Ratio

 \Box Ratio of signal power to noise power

$$\Box SNR = \frac{P_{signal}}{P_{noise}} , SNR|_{db} = 10 \log \left(\frac{P_{signal}}{P_{noise}}\right)$$

ENOB: Effective Number of Bits

- Effective resolution of ADC under observance of all noise and distortions
- □ SINAD (SIgnal to Noise And Distortion) \rightarrow ratio of fundamental signal to the sum of all distortion and noise (DC term removed)
- Comparison of SINAD of ideal and real ADC with same word length

Ideal ADC

Further ADC Values

- Bandwidth: Maximum measurable frequency of the input signal
- Power dissipation
- Conversion Time: Time for conversion of an analog value into a digital value (*interesting in pipeline and parallel structures*)
- Sampling rate (f_{samp}): Rate at which new digital values are sampled from the analog signal (also: sample
- Errors: Quantization, offset, gain, INL, DNL, missing codes, non-monotonicity...

Quantization Error ε

Offset Error

Parallel shift of the whole curve

E.g. caused by difference in ground line voltages

Gain Error

- Corresponds to too small or to large but equal ΔV
- E.g. caused by too small or too large V_{ref}

Differential Non-Linearity (DNL)

- Deviation of ΔV from V_{LSB} value (in V_{LSB})
- Defined after removing of gain
- E.g. Caused by mismatch of the reference elements

Missing Codes

- Some bit combinations never appear
- Occurs, if maximum DNL > 1 V_{LSB} or maximum INL > 0.5 V_{LSB}

Non-Monotonicity

- Lower conversion result for a higher input voltage
- Includes that same conversion may result from two separate voltage ranges

Aliasing

- Too small sampling rate f_{samp} (under-sampling) can lead to aliasing (= frequency of reconstructed signal is to low)
- Nyquist criterion:
 - □ f_{samp} more than two times higher than highest frequency component f_{in} of input signal: $f_{samp} > 2 \cdot f_{in}$

3. Nyquist-Rate ADCs

- How can Nyquist-rate ADCs be grouped?
- What is a dual slope ADC?
- What is a successive approximation ADC?
- What is an algorithmic ADC?
- What is a flash ADC?
- What is a pipelined ADC?
- What are the pros and cons of the Nyquist-rate ADCs?

Nyquist-Rate ADCs

- Sampling frequency f_{samp} is in the same range as frequency f_{in} of input signal
- Low-to-medium speed and high accuracy ADCs
 Integrating
- Medium speed and medium accuracy ADCs
 - \Box Successive Approximation
 - □ Algorithmic
- High speed and low-to-medium accuracy ADCs
 Flash
 - Two-Level Flash
 - Pipelined

Successive Approximation ADC

- Generate internal analog signal V_{D/A}
- Compare $V_{D/A}$ with input signal V_{in}
- Modify $V_{D/A}$ by $D_0 D_1 D_2 \dots D_{N-1}$ until closest possible value to V_{in} is reached

Successive Approximation ADC cont'd

Successive Approximation ADC cont'd

P. Fischer, VLSI-Design - ADC und DAC, Uni Mannheim, 2005

Successive Approx.: pros and cons

Low Area / Low Power

- High effort for DAC
- Early wrong decision leads to false result

Algorithmic ADC

- Same idea as successive approximation ADC
- Instead of modifying $V_{ref} \rightarrow$ doubling of error voltage (V_{ref} stays constant)

Algorithmic ADC con't

Algorithmic ADC: pros and cons

- Less analog circuitry than Succ. Approx.
 ADC
- Low Power / Low Area

High effort for multiply-by-two gain amp

Flash ADC

- V_{in} connected with 2^N comparators in parallel
- Comparators connected to resistor string
- Thermometer code
- R/2-resistors on bottom and top for 0.5 LSB offset

Some Flash ADC design issues

- Input capacitive loading on V_{in}
- Switching noise if comparators switch at the same time
- Resistors-string bowing by input currents of bipolar comparators (if used)
- Bubble errors in the thermometer code based on comparator's metastability

Flash ADC: pros and cons

✓ Very fast

- ✗ High effort for the 2^N comparators
- High Area / High Power

Recommended for 6-8 Bit and less

Two-Level Flash ADC

Conversion in two steps:

- Determination of MSB-Bits and reconverting of digital signal by DAC
- 2. Subtraction from V_{in} and determination of LSB-Bits
- F.e. 8-Bit-ADC: Flash: 2⁸=256 comparators, Two-level:
 2·2⁴ = 32 comparators

Two-Level Flash ADC: pros and cons

- ✓ Same throughput as Flash ADC
- Less area, less power, less capacity loading than Flash ADC
- Easy error-correction after first stage
- Larger latency delay than Flash ADC
- ➤ Design of *N*/2-Bit-DAC
- Currently most popular approach for highspeed/medium accuracy ADCs

Pipelined ADCs

- Extension of two-level architecture to multiple stages (up-to 1 Bit per stage)
- Each stage is connected with CLK-signal
 - Pipelined conversion of subsequent input signals
 - First result after m CLK cycles (m amount of stages)
- Stages can be different

Pipelined ADCs: Scheme

Pipelined ADC: pros and cons

- High throughput
- Easy upgrade to higher resolutions
- High demands on speed and accuracy on gain amplifier
- High CLK-frequency needed
- High Power

Oversampling (OS)

Quantized signal is low-pass filtered to frequency f₀

 \bullet elimination of quantization noise greater than f_o

• Oversampling rate (OSR) is ratio of sampling frequency f_s to Nyquist rate of f_o $OSR = \frac{f_s}{2f_0}$

Sigma Delta ADC Example

Sigma Delta ADC Example (Curves)

Sigma Delta ADC: pros and cons

- ✓ High resolution
- Less effort for analog circuitry

- X Low speed
- High CLK-frequency
- Currently popular for audio applications

5. Practical issues

- What are the performance limitations of ADCs?
- What are the differences between PCBand IC-designs?
- Are there hints to improve the ADC design?
- What are S&H circuits?

Performance Limitations

Analog circuit performance limited by:

- High-frequency behavior of applied components
- Noise
 - \Box Crosstalk (analog \leftrightarrow analog, analog \leftrightarrow digital)
 - Power supply coupling
 - \Box Thermal noise (white noise)
- Parasitic components (capacitances, inductivities)
- Wire delays

PCB- versus IC-Design

- PCB: Printed Circuit Board, IC: Integrated Circuit
- Noise in PCB-circuits much higher than in ICs
- Influences of parasitics in PCB-circuits much higher than in ICs
- High-frequency behavior of PCB-circuits much worse than of ICs
- Wire delays in PCB much higher than in ICs

High accuracy, high speed, high bandwidth ADCs only possible in ICs!

Some Hints for Mixed Signal Designs

For PCB and IC:

- Keep ground lines separate!
- Don't overlap digital and analog signal wires!

Mancini, Opamps for everyone, Texas Instr., 2002

- Don't overlap digital and analog supply wires!
- Locate analog circuitry as close as possible to the I/O connections!
- Choose right passive components for high-frequency designs! (only PCB)

Sample and Hold Circuits

- S&H circuits hold signal constant for conversion
- A sample and a hold device (mostly switch and capacitor)
- Demands:
 - Small RC-settling-time (voltage over hold capacitor has to be fast stable at < 1 LSB)</p>
 - Exact switching point (else "aperture-error")
 - □ Stable voltage over hold capacitor (else "droop error")
 - □ No charge injection by the switch

6. Low Power ADC Design

- What are the main components of power dissipation?
- How can each component be reduced?
- What are the differences between power and energy?

Power Dissipation

Two main components:

- Dynamic power dissipation (P_{dyn})
 - Based on circuit's activity
 - \Box Square dependency on supply voltage V_{DD^2}
 - \Box Dependent on clock frequency f_{clk}
 - \Box Dependent on capacitive load C_{load}
 - \Box Dependent on switching probability α

 $\Psi_{dyn} = V_{DD^2} \cdot C_{load} \cdot f_{clk} \cdot \alpha$

- Static power dissipation (P_{static})
 - Constant power dissipation even if circuit is inactive
 - Steady low-resistance connections between VDD und GND (only in some circuit technologies like pseudo NMOS)
 - □ Leakage (critical in technologies \leq 0.18 µm)

Low Power ADC Design

- Reduction of V_{DD}:
 - □ Highest influence on power ($P \sim V_{DD^2}$)
 - \Box Sadly, delay increases ($t_d \sim 1/V_{DD}$)
 - \Box Sadly, loss of maximal amplitude \rightarrow SNR goes down
 - \Box Possible solutions:
 - Different supply voltages within the design
 - Dynamic change of V_{DD} depending on required performance
- Reduction of f_{clk}:
 - \Box Dynamic change of f_{clk}

Low Power ADC Design cont'd

Reduction of C_{load}:

- \Box C_{load} depends on transistor count and transistor size, wire count and wire length
- \Box Possible Solutions:
 - Reduction of amount evaluating components
 - Sizing of the design = all transistor get minimum size to reach desired performance
 - Intelligent placing and routing

Low Power ADC Design cont'd

• Reduction of α :

- Activity = possibility that a signal changes within one clock cycle
- \square Possible Solutions:
 - Clock gating \rightarrow no clock signal to inactive blocks
 - High active signals connected to the end of blocks

Asynchronous designs

Which ADC for Low Power?

If low speed: Dual Slope ADC

- \Box Area is independent of resolution
- □ Less components
- Problem: Counter
- If medium / high speed: mixed solutions
 - \Box Popular: pipelined ADC with SAR
 - \Box Pipelined solutions allows reduction of V_{DD}
 - □ Long latency but high throughput

Power vs. Energy

Power consumption in Watts

- \square Power = voltage \cdot current at a specific time point
- □ Peak power:
 - Determines power ground wiring designs and Packaging limits
 - Impacts of signal noise margin and reliability analysis
- Energy consumption in Joules
 - \Box Energy = power \cdot delay (joules = watts * seconds)
 - □ Rate at which power is consumed over time
 - Lower energy number means less power to perform a computation at the same frequency

Power vs. Energy cont'd

Power vs. Energy: Simple Example

- Shaded blocks are ignored
- Dissipation for one input signal:

	V _{DD}	I (each gray block)	Delay	Power	Energy
Flash	1 V	1 μΑ	1 ns	4 μW	4 fJ
2L-Flash	1 V	1 μΑ	2.5 ns	2 μW	5 fJ

Low Power ADCs Conclusion

- There is no patent solution for low power ADCs!
- Every solution depends on the specific task.
- Before optimization analyze the problem:
 - \Box Which resolution?
 - □ Which speed?
 - \Box What are the constraints (area, energy, V_{DD} , V_{in} ,...)?
 - \Box Which technology can be used?
- Think also about unconventional solutions (dynamic logic, asynchronous designs, ...).

Basic ADC Literature

- [All02] P. E. Allen, D. R. Holberg, "CMOS Analog Circuit Design", Oxford University Press, 2002
- [Azi96] P.M. Aziz, H. V. Sorensen, J. Van der Spiegel, "An Overview of Sigma-Delta Converters" IEEE Signal Processing Magazine, 1996
- [Eu07] E. D. Gioia, "Sigma-Delta-A/D-Wandler", 2007
- [Fi05] P. Fischer, "VLSI-Design 0405 ADC und DAC", Uni Mannheim, 2005
- [Man02] Mancini, "Opamps for everyone", Texas Instr., 2002
- [Joh97] D. A. Johns, K. Martin, "Analog Integrated Circuit design", John Wiley & Sons, 1997
- [Tan00] S. Tanner, "Low-power architectures for single-chip digital image sensors", dissertation, University of Neuchatel, Switzerland, 2000.