Edge Computing

Tassadag Hussain Cheema

Professor EE Department NAMAL University /? ‘w\

| |
February 27, 2018 |
y ‘&s_\%}- " ! NN, -

Edge is about processing data closer to where it's being generated,
enabling processing at greater speeds and volumes, leading to greater
action-led results in real time.

« Hardware Architecture
 Operating System

« Application Development Framework

Hardware Architecture

Single Board Computer
RasppberyPi

RasppberyPi Pico

finorilog2(nonvolatile / 16k]))

P2040
B

‘ Tioor(log2(ram 7 16k))
Type of core (e.g. MO+)

Number of cores

Raspbarry Pi

The Raspberry Pi Pico - bottom view (courtesy of raspberrypi.org)

Hardware Specifications

* Processor Architecture

— Number of Cores (ALU) and Operating Frequency

* Processor Local Bus
- Instruction and Data Bus
- Program and Data Memory

- Local Memory (Cache and ScratchPad)

* Processor External Bus (Peripheral Bus)
- Main Memory
- DMA, PWM, ADC, DAC

- 1/O Interfaces

CPU BUSES

&>
Vv

Add & Data BUS

—

Address BUS

=

Control BUS

CPU
Interface

CHIPSET
Northbridge

Southbridge

Address Bus

 SYSTEM

<: Data Bus

RAM - Main Memory

\I Control Bus |
VY VVV

I
st ek
U ‘\‘.

N
V/

b

/[Bus
A

4

l

Input/ Output
Interface

Input Devices Output Devices

Raspberry P13 |7] Odroid C-2 [11]

Odroid XU-4 |3,10)

SoC Broadcom BCM2837 Amlogic S905
CPU 4x ARM Cortex-A53 4xARM Cortex-A53
1.2GHz, in-order 2.0GHz, in-order

Arch ARMvS8-A (64 bit) ARMvS8-A (64 bit)

Samsung Exynos 5422

ARM big.LITTLE octa core
4x A7, 1.5GHz, in-order
4xA15, 2.0GHz, out-of-order
ARMvT7-A (32 bit)

L1$ (I/D) 32KB/32KB 32KB/32KB 32KB/32KB
12§ 512KB 512KB 512KB (A7), 2MB (A15)
Memory 1GB LPDDR2 2GB DDR3 2GB LPDDRS3

900 MHz 32 bit / 912Mhz 32 bit / 933MHz, PoP
GPU BCM VideoCore IV ARM Mali-450 ARM Mali-T628 MP6
Compute no no OpenCL 1.1
0OS Ubuntu MATE 15.10 Ubuntu MATE 16.04 Ubuntu MATE 15.10

Kernel 4.1.18-v7+ (armv7l) 3.14.29-29 (aarch64)
Compiler GCC v5.2.1 GCC v5.3.1

3.10.96-78 (armv7l, HMP)
GCC v5.2.1

RPI-Pico: Hardware Specifications

* Operating Frequency and Processor: Dual ARM Cortex-M0+ @ 133MHz
* RAM and ROM: 264kB on-chip SRAM in six independent banks, Support for up to 16MB of off-chip flash memory

 External Peripherals :
- DMA controller
- Fully connected AHB crossbar
- Interpolator and integer divider peripherals
- On-chip programmable LDO to generate core voltage
- 2 on-chip PLLs to generate USB and core clocks
- 30 GPIO pins, 4 of which can be used as
- analogue inputs
- Serial: 2 UARTSs, 2 SPI controllers, 2 12C controllers
- 16 PWM channels
- USB 1.1 controller and PHY, with host and device support

- 8 PIO state machines

Edge is about processing data closer to where it's being generated,
enabling processing at greater speeds and volumes, leading to greater
action-led results in real time.

« Hardware Architecture
« Operating System

« Application Development Framework

Operating System

 An Operating System (OS) is a software program that
acts as an intermediary between the computer hardware “
and the application software. ﬁ u

* |t manages the computer's hardware resources, such as
the central processing unit (CPU), memory, disk drives, Application
and input/output devices, and provides services to
application software, such as file management, memory
management, and process scheduling. It also provides a
user interface for interacting with the computer and

running application programs.
Task Manager, Memory Manager, File Manager,

Operating system

1 L=

Network Manager, Power Manager, 1/0 Manager Hardware

« Examples of popular operating systems include Windows,
macOS, Linux, and Android.

Types of OS

* Single-user, single-tasking OS: This is the simplest type of operating system and can only support one
user and one task at a time. Examples include MS-DOS and early versions of Apple's Mac OS.

* Single-user, multi-tasking OS: This type of operating system can run multiple applications
simultaneously, but only supports one user at a time. Examples include Windows, macQOS, and Linux.

« Multi-user OS: This type of operating system can support multiple users running multiple applications
simultaneously. Examples include UNIX and mainframe operating systems.

* Real-time OS: This type of operating system is designed to handle time-sensitive applications, such as
those used in robotics, aerospace, and industrial control systems. Examples include VxWorks and QNX.

* Mobile OS: This type of operating system is designed for mobile devices, such as smartphones and
tablets. Examples include Android, iOS, and Windows Mobile.

+ Embedded OS: This type of operating system is designed to run on specialized devices, such as digital
cameras, printers, and routers. Examples include Embedded Linux and Windows Embedded.

* Network OS: This type of operating system is designed to manage and coordinate multiple computers
and devices on a network. Examples include Novell NetWare, Windows Server, and Linux server.

» Server OS: This type of operating system is designed specifically to run server applications, such as web
servers, email servers, and database servers. Examples include Windows Server, Linux server, and
macOS Server.

Disk

Program

Instruction #1
Instruction #2 R

Instruction #3 Program Instantiate

RAM

Process

Instruction #4

Abstraction

Process #1

Table of thread pointers
and their priorities

Thread #1 (high)
Thread #2 (low)
! Thread #3 (med)
| Thread #4 (low)

Instruction #N

Context Switch

ekl cutto”

Process #2

Collect
pointers

= Execute =
W)

- Scheduler e Process #M

"M Thread #K (high)
(Part of OS)

Electronic components

Steps Installing OS

Download OS Image
Boot Loader: SD Card
Stored in the first sector of the SD card.
Insert and Run
Firmware:
 Collection of low-level software components that interact directly with
the hardware of the device.

Edge is about processing data closer to where it's being generated,
enabling processing at greater speeds and volumes, leading to greater
action-led results in real time.

« Hardware Architecture
 Operating System

 Application Development Framework

Application Development Framework

Preprocessor

Assembler

Python Execution Flow

Tokenization: When you run a Python program, the Python interpreter first tokenizes the
source code. This means it breaks the code down into a sequence of tokens (e.g. keywords,
identifiers, operators, etc.), each of which represents a specific element of the code.

Parsing: Once the source code has been tokenized, the Python interpreter then parses it to
build an abstract syntax tree (AST). The AST is a tree-like structure that represents the

syntactic structure of the code, and it's used by the interpreter to determine the meaning
of the code.

Compilation: After the AST has been built, the Python interpreter then compiles it into

bytecode. Bytecode is a lower-level, platform-independent representation of the code that

can be executed by the Python virtual machine (PVM).
Source code

Execution: Finally, the Python interpreter executes the l
bytecode using the PVM. The PVM is responsible for translating -
the bytecode into machine code that can be executed by the CPU. o"ip' e
Bytecode
| Virtual
nput — — Output

Machine

Application Development Languages

Most in-demand programming languages of 2022

« Assembly

Based on Linkedin job postings in the USA & Europe
o C/C + + Py‘[hon
« Python Java

JavaScript
C++

C#

C
TypeScript
PHP

Perl

Ruby

o

50,000 100,000 150,000 200,000 250,000

B US Job Posts [European Economic Area Job Posts By: CodingNomads

Edge Computing

Hardware
- Raspberry-pi
- Raspberry-pi Pico
Linux OS
« Thonny
- Micro-Python

: Application Development

Thonny: Application Development Environment

« Download Thonny Application Development

- https://thonny.org/
« Configuration (HandsOn)

Generic Code Structure

#Add libraries

#Add global variables
#Initialization (Peripherals etc.)
#Read Data

#Store it on local memory
#Apply local processing
#Transfer / Store / Display

LED Blinking

from machine import Pin
led = Pin(25, Pin.OUT)
led.toggle()

Read from ADC

from machine import ADC, Pin

import time
adc = ADC(Pin(26))
while True:

print(adc.read_ul6())

time.sleep(1)

from machine import Pin, Timer
led = Pin(25, Pin.OUT)

timer = Timer()

def blink(timer):
led.toggle()

timer.init(freq=2.5, mode=Timer.PERIODIC, callback=blink)

ADC and Temprature Sensor

import machine

import utime

sensor_temp = machine.ADC(4)

conversion_factor = 3.3 / (65535)

while True:
reading = sensor_temp.read_ul6() * conversion_factor
temperature = 27 - (reading - 0.706)/0.001721
print(temperature)

utime.sleep(2)

Tasks:

« Read multi-sensor Data

« Store it local data structure (As per specification of sensor and
application requirement)

 Perform pre-processing (Signal Conditioning, Enhancement, noise
removal etc)

* Transfer Data

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

