
Edge Computing

February 27, 2018

Tassadaq Hussain Cheema
Professor EE Department NAMAL University

Edge is about processing data closer to where it's being generated,
enabling processing at greater speeds and volumes, leading to greater
action-led results in real time.

● Hardware Architecture
● Operating System
● Application Development Framework

Hardware Architecture
● Single Board Computer

– RasppberyPi
– RasppberyPi Pico

Hardware Specifications
● Processor Architecture

– Number of Cores (ALU) and Operating Frequency
● Processor Local Bus

– Instruction and Data Bus
– Program and Data Memory
– Local Memory (Cache and ScratchPad)

● Processor External Bus (Peripheral Bus)
– Main Memory
– DMA, PWM, ADC, DAC
– I/O Interfaces

RPI-Pico: Hardware Specifications
● Operating Frequency and Processor: Dual ARM Cortex-M0+ @ 133MHz
● RAM and ROM: 264kB on-chip SRAM in six independent banks, Support for up to 16MB of off-chip flash memory
● External Peripherals :

– DMA controller
– Fully connected AHB crossbar
– Interpolator and integer divider peripherals
– On-chip programmable LDO to generate core voltage
– 2 on-chip PLLs to generate USB and core clocks
– 30 GPIO pins, 4 of which can be used as
– analogue inputs
– Serial: 2 UARTs, 2 SPI controllers, 2 I2C controllers
– 16 PWM channels
– USB 1.1 controller and PHY, with host and device support
– 8 PIO state machines

Edge is about processing data closer to where it's being generated,
enabling processing at greater speeds and volumes, leading to greater
action-led results in real time.

● Hardware Architecture
● Operating System
● Application Development Framework

Operating System
● An Operating System (OS) is a software program that

acts as an intermediary between the computer hardware
and the application software.

● It manages the computer's hardware resources, such as
the central processing unit (CPU), memory, disk drives,
and input/output devices, and provides services to
application software, such as file management, memory
management, and process scheduling. It also provides a
user interface for interacting with the computer and
running application programs.
Task Manager, Memory Manager, File Manager,
Network Manager, Power Manager, I/O Manager

● Examples of popular operating systems include Windows,
macOS, Linux, and Android.

Types of OS
● Single-user, single-tasking OS: This is the simplest type of operating system and can only support one

user and one task at a time. Examples include MS-DOS and early versions of Apple's Mac OS.
● Single-user, multi-tasking OS: This type of operating system can run multiple applications

simultaneously, but only supports one user at a time. Examples include Windows, macOS, and Linux.
● Multi-user OS: This type of operating system can support multiple users running multiple applications

simultaneously. Examples include UNIX and mainframe operating systems.
● Real-time OS: This type of operating system is designed to handle time-sensitive applications, such as

those used in robotics, aerospace, and industrial control systems. Examples include VxWorks and QNX.
● Mobile OS: This type of operating system is designed for mobile devices, such as smartphones and

tablets. Examples include Android, iOS, and Windows Mobile.
● Embedded OS: This type of operating system is designed to run on specialized devices, such as digital

cameras, printers, and routers. Examples include Embedded Linux and Windows Embedded.
● Network OS: This type of operating system is designed to manage and coordinate multiple computers

and devices on a network. Examples include Novell NetWare, Windows Server, and Linux server.
● Server OS: This type of operating system is designed specifically to run server applications, such as web

servers, email servers, and database servers. Examples include Windows Server, Linux server, and
macOS Server.

Steps Installing OS

● Download OS Image
● Boot Loader: SD Card

Stored in the first sector of the SD card.
● Insert and Run
● Firmware:

● Collection of low-level software components that interact directly with
the hardware of the device.

Edge is about processing data closer to where it's being generated,
enabling processing at greater speeds and volumes, leading to greater
action-led results in real time.

● Hardware Architecture
● Operating System
● Application Development Framework

Application Development Framework

Python Execution Flow
● Tokenization: When you run a Python program, the Python interpreter first tokenizes the

source code. This means it breaks the code down into a sequence of tokens (e.g. keywords,
identifiers, operators, etc.), each of which represents a specific element of the code.

● Parsing: Once the source code has been tokenized, the Python interpreter then parses it to
build an abstract syntax tree (AST). The AST is a tree-like structure that represents the
syntactic structure of the code, and it's used by the interpreter to determine the meaning
of the code.

● Compilation: After the AST has been built, the Python interpreter then compiles it into
bytecode. Bytecode is a lower-level, platform-independent representation of the code that
can be executed by the Python virtual machine (PVM).

● Execution: Finally, the Python interpreter executes the
bytecode using the PVM. The PVM is responsible for translating
the bytecode into machine code that can be executed by the CPU.

Application Development Languages

● Assembly
● C/C++
● Python
●

Edge Computing: Application Development
● Hardware

– Raspberry-pi
– Raspberry-pi Pico

● Linux OS
● Thonny

– Micro-Python

Thonny: Application Development Environment
● Download Thonny Application Development

– https://thonny.org/
● Configuration (HandsOn)

Generic Code Structure

#Add libraries
#Add global variables
#Initialization (Peripherals etc.)
#Read Data
#Store it on local memory
#Apply local processing
#Transfer / Store / Display

LED Blinking
from machine import Pin
led = Pin(25, Pin.OUT)
led.toggle()

Read from ADC
from machine import ADC, Pin
import time

adc = ADC(Pin(26))

while True:
 print(adc.read_u16())
 time.sleep(1)

from machine import Pin, Timer
led = Pin(25, Pin.OUT)
timer = Timer()

def blink(timer):
 led.toggle()

timer.init(freq=2.5, mode=Timer.PERIODIC, callback=blink)

ADC and Temprature Sensor
import machine
import utime

sensor_temp = machine.ADC(4)
conversion_factor = 3.3 / (65535)

while True:
 reading = sensor_temp.read_u16() * conversion_factor
 temperature = 27 - (reading - 0.706)/0.001721
 print(temperature)
 utime.sleep(2)

Tasks:

● Read multi-sensor Data
● Store it local data structure (As per specification of sensor and

application requirement)
● Perform pre-processing (Signal Conditioning, Enhancement, noise

removal etc)
● Transfer Data

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

