
IoT Application Development

February 27, 2018

Tassadaq Hussain Cheema
Professor EE Department NAMAL University

● Front-End User Interface
● Data Architecture
● Software Architecture
● Hardware Architecture

Front-end Interface (UI)
● Front-end interface architecture involves defining the visual

and interactive elements of the user interface, such as
buttons, menus, forms, icons, and other graphical elements.
It also involves defining the layout and navigation of the
user interface, including the organization of content, the
flow of information, and the overall user experience.

Parameters
● User requirements: UI design begins with identifying the needs and preferences of the target audience,

including their knowledge and experience, and designing the interface to meet their expectations.
● Visual design: UI design involves creating a visually appealing interface that is easy to read, navigate, and

understand. This includes selecting appropriate colors, fonts, and images, and designing a layout that
organizes the content effectively.

● Navigation: UI design includes designing an intuitive navigation system that enables users to find the
information they need quickly and easily. This includes creating clear and concise menus, buttons, and
links that guide users through the application.

● Interaction design: UI design involves creating an interaction design that enables users to interact with the
application easily and efficiently. This includes designing forms, buttons, and other interactive elements
that respond to user input and provide feedback.

● Accessibility: UI design includes designing an accessible interface that can be used by people with
disabilities. This involves complying with accessibility guidelines and standards, such as WCAG (Web
Content Accessibility Guidelines), and designing the interface to be compatible with assistive technologies.

● Performance: UI design includes designing the interface to perform efficiently and effectively. This involves
optimizing the interface for speed, responsiveness, and scalability, and minimizing the impact on system
resources.

Python and Data Visualization

● Matplotlib
● Plotly
● Seaborn
● Ggplot
● Altair

Library Description Pros Cons Web and
Mobile

Support
Matplotlib A widely-used plotting library

for creating static plots.
- Offers extensive
customization options

- Steeper learning curve
compared to some other
libraries

Limited

Plotly An interactive visualization
library with web-based
features.

- Produces interactive
and animated plots

- Some advanced features
require a paid subscription

Extensive

Seaborn Built on top of Matplotlib,
provides high-level interface.

- Simplifies creating
attractive statistical
visualizations

- Limited customization
options compared to
Matplotlib

Limited

Ggplot Based on the popular R
library ggplot2.

- Familiar syntax for R
users

- Less actively maintained
compared to other libraries

Limited

Altair Declarative library based on
the Grammar of Graphics.

- Easy to use with a
concise and intuitive
syntax

- Limited support for some
complex plot types

Limited

Data Architecture
● Data architecture is a set of principles, policies, standards, and

models that govern how data is organized, stored, processed, and
accessed by the IoT system.

● DA key component of IoT application architecture and plays a
critical role in supporting complex operations and decision-making.

Data Architecture Parameters
● Data requirements: Data architecture begins with identifying the data requirements of the application program,

including the types of data needed, their sources, and their intended use. Data requirements should be aligned
with the application objectives and strategies.

● Data models: Data architecture involves creating data models that describe the structure and relationships of
the data. Data models can be conceptual, logical, or physical, and they should be designed to support the
applicatoin data requirements.

● Data storage and retrieval: Data architecture also involves defining how data will be stored and retrieved in the
system. This includes selecting appropriate data storage technologies, defining data access methods, and
establishing data management policies.

● Data integration: Data architecture includes designing and implementing data integration solutions to ensure
that data from different sources can be combined and analyzed effectively. This involves defining data
integration architectures and selecting appropriate tools and technologies for data integration.

● Data security: Data architecture includes defining data security policies and procedures to ensure that data is
protected from unauthorized access, use, or disclosure. This involves establishing data security controls, such as
access controls, encryption, and authentication, and implementing security best practices.

● Data governance: Data architecture includes defining data governance policies and procedures to ensure that
data is managed effectively and efficiently. This involves establishing data quality standards, data management
processes, and data stewardship roles and responsibilities.

● Data Structures: Choose appropriate data structures in Python based on the nature of your data and the operations you
need to perform. Python provides built-in data structures like lists, tuples, sets, and dictionaries. Understanding the
characteristics and performance implications of each data structure is crucial for efficient data handling.

● Data Validation and Cleaning: Implement data validation and cleaning techniques to ensure the integrity and quality of
your data. Python offers various libraries and functions for data validation, such as regular expressions, data type
checking, and input sanitization.

● Modular Code Organization: Organize your Python code into modular components to promote reusability and
maintainability. Define separate functions or classes for specific data processing tasks, making it easier to handle different
aspects of data architecture.

● Data Persistence: Choose appropriate methods for data persistence, such as writing data to files (e.g., CSV, JSON, or binary
formats), interacting with databases using Python database APIs (e.g., SQLite, PostgreSQL), or using NoSQL databases
(e.g., MongoDB) depending on the requirements of your application.

● Data Serialization: When transferring data between different components or systems, use serialization techniques to
convert data into a portable format. Python provides modules like pickle, json, and msgpack for serializing and
deserializing data.

● Data Processing and Analysis: Utilize Python libraries for data processing and analysis, such as NumPy, Pandas, and SciPy.
● Visualization: Leverage Python libraries like Matplotlib, Plotly, or Seaborn for data visualization.
● Data Pipelines and Workflow: Design data pipelines and workflows using Python libraries like Apache Airflow or Luigi. These

tools help manage and orchestrate the flow of data between different stages of processing, making it easier to handle
complex data transformations and dependencies.

● Error Handling and Logging: Implement error handling mechanisms and logging practices to capture and handle exceptions
or errors during data processing. Proper error handling and logging allow for easier debugging and troubleshooting.

● Performance Optimization: (Parallel Processing Numba or Cython for faster execution)
● Scalability and Distributed Computing: (Dask or Apache Spark for distributed computing

Software Architecture
Software architecture involves the design and organization of software systems. Key parameters involved in software architecture
include:
Functionality: This refers to the software's ability to perform the intended tasks and meet the needs of its users.
Scalability: This parameter is about the software's ability to handle increased workload or larger amounts of data without losing
performance.
Reliability: The software should be dependable and able to consistently perform its functions correctly, even under unexpected
circumstances.
Reuseability: The software should be easy to modify or maintain over time, without requiring significant effort or causing
downtime.
Performance: Deals with the software's speed and efficiency to optimize the best possible user experience.
Security: The software should be designed with appropriate security measures to protect against unauthorized access, data
breaches, and other threats.
Portablity: The software should be able to work with other systems and software programs, using standard protocols and
interfaces.
Usability: The software should be designed with a user-friendly interface and intuitive user experience, to make it easy for users
to interact with and achieve their goals.
Architecture style: There are several architecture styles such as Client-Server, Microservices, Monolithic, Event-driven, etc., and
choosing the right style is an important parameter in software architecture.
Technology stack: The technology stack includes the programming languages, frameworks, and tools used to develop the
software. Choosing the right technology stack can affect the software's performance, scalability, and maintainability.

● Device Integration:
● Data Management Libraries
● Operating System Support
● Data Processing and Analytics:
● Communication and Protocols:
● Edge Computing:
● Scalability and Flexibility:
● Real-time Event-Trigger Architecture:
● API and Service Design:.
● Device Management and Monitoring:
● Cloud Integration:
● Redundancy and Failover:

Software Structure

Libraries
Global variables
Control Signals
Initialization (Peripherals etc.)
Data Structure (Read/Write)
Processing
#Function Calls (Read/Write, Pre-Process, Filter, Computation, etc.)
Transfer / Store / Display

Software Architecture Representation
● Flow Diagram: It is used to describe the flow of control or data between different

components or subsystems within the software system. They can help to
illustrate how the different components interact with each other and how the
data flows between them.

● Block diagrams: Block diagrams are used to illustrate the high-level structure of
a system or software architecture. They use blocks to represent different
components or subsystems and arrows to show the relationships and
interactions between them.

● State diagrams: State diagrams are used to represent the behavior of a system
or software architecture. They show the different states that a system can be in
and the events that trigger transitions between these states.

● Entity-relationship diagrams: Entity-relationship diagrams are used to represent
the relationships between different entities in a system. They are commonly
used in database design to illustrate the relationships between tables.

Hardware Architecture

Hardware Architecture
● Single Board Computer

– RasppberyPi
– RasppberyPi Pico

Hardware Specifications
● Processor Architecture

– Number of Cores (ALU) and Operating Frequency
● Processor Local Bus

– Instruction and Data Bus
– Program and Data Memory
– Local Memory (Cache and ScratchPad)

● Processor External Bus (Peripheral Bus)
– Main Memory
– DMA, PWM, ADC, DAC
– I/O Interfaces

Assignment 2

● Select a sensor available in the lab, and make a project title
● Draw/make data architecture, Front-end Architecture, Software

Architecture and Hardware Architecture for the Project-title.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

